復(fù)數(shù)1+
3
i
與復(fù)數(shù)-
3
+i
在復(fù)平面上的對(duì)應(yīng)點(diǎn)分別是A,B,O為坐標(biāo),則∠AOB等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考點(diǎn):復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:求出兩復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn),得到對(duì)應(yīng)向量的坐標(biāo),由數(shù)量積等于0得到∠AOB的值.
解答: 解:∵復(fù)數(shù)1+
3
i
與復(fù)數(shù)-
3
+i
在復(fù)平面上的對(duì)應(yīng)點(diǎn)分別是A(1,
3
),B(-
3
,1
),
OA
=(1,
3
),
OB
=(-
3
,1
),
OA
OB
=1×(-
3
)+
3
×1=0

∴∠AOB=
π
2

故選:D.
點(diǎn)評(píng):本題考查復(fù)數(shù)的基本概念,考查了復(fù)數(shù)的幾何意義,訓(xùn)練了利用數(shù)量積判斷兩個(gè)向量的垂直關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,P是AA1的中點(diǎn),E是BB1上的點(diǎn),則PE+EC的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x=2m-1,m∈N+},B={x|x=2m+1,m∈N+},則集合A與B之間的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
(x-y)(x+y-5)≥0
1≤x≤4
,則z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為坐標(biāo)原點(diǎn),P1、P2是雙曲線
x2
a2
-
y2
b2
=1
上的點(diǎn).P是線段P1P2的中點(diǎn),直線OP、P1P2的斜率分別為k1、k2,則k1k2=( 。
A、
b
a
B、
b2
a2
C、
a
b
D、
a2
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圖中表示的區(qū)域滿足不等式( 。
A、2x+2y-1>0
B、2x+2y-1≥0
C、2x+2y-1≤0
D、2x+2y-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合An={x|(x-1)(x-n2-4+lnn)<0},當(dāng)n取遍區(qū)間(1,3)內(nèi)的一切實(shí)數(shù),所有的集合An的并集是( 。
A、(1,13-ln3)
B、(1,6)
C、(1,+∞)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)水平放置的平面圖形的斜二測(cè)直觀圖是直角梯形(如圖).∠ABC=45°,AB=AD=1,DC⊥BC,則這個(gè)平面圖形的面積為( 。
A、
1
4
+
2
4
B、2+
2
2
C、
1
4
+
2
2
D、
1
2
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,滿足
b-a
c
=
sinB-sinC
sinB+sinA
,關(guān)于x的不等式x2cosC+4xsinC+6≥0對(duì)任意的x∈R恒成立.
(1)求角A的值;
(2)求f(C)=2sinC•cosB的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案