14.如圖,在底面為梯形的四棱錐S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=$\sqrt{2}$,SA=SC=SD=2.
(1)求證:AC⊥SD;
(2)求點(diǎn)B到平面SAD的距離.

分析 (1)取AC中點(diǎn)O,連結(jié)OD,SO,由等腰三角形的性質(zhì)可知AC⊥SO,AC⊥OD,故AC⊥平面SOD,于是AC⊥SD;
(2)由△ASC是等邊三角形可求得SO,AC,利用勾股定理的逆定理可證明AD⊥CD,SO⊥OD,故而SO⊥平面ABCD,由V棱錐B-SAD=V棱錐S-ABD,計(jì)算即可.

解答 證明:(1)取AC中點(diǎn)O,連結(jié)OD,SO,
∵SA=SC,∴SO⊥AC,
∵AD=CD,∴OD⊥AC,
又∵OS?平面SOD,OD?平面SOD,OS∩OD=O,
∴AC⊥平面SOD,∵SD?平面SOD,
∴AC⊥SD.
解:(2)∵SA=SC=2,∠ASC=60°,∴△ASC是等邊三角形,∴AC=2,OS=$\sqrt{3}$,
∵AD=CD=$\sqrt{2}$,∴AD2+CD2=AC2,∴∠ADC=90°,OD=$\frac{1}{2}AC$=1.
∵SD=2,∴SO2+OD2=SD2,∴SO⊥OD,
又∵SO⊥AC,AC?平面ABCD,OD?平面ABCD,AC∩OD=O,∴SO⊥平面ABCD,
又s△SAD=$\frac{1}{2}×AD×\sqrt{S{A}^{2}-(\frac{AD}{2})^{2}}=\frac{\sqrt{7}}{2}$
∴V棱錐B-SAD=V棱錐S-ABD,
$\frac{1}{3}×\frac{\sqrt{7}}{2}×d=\frac{1}{3}×\frac{1}{2}×AD×CD×SO$,
解得d=$\frac{2\sqrt{21}}{7}$,
∴點(diǎn)B到平面SAD的距離d=$\frac{2\sqrt{21}}{7}$

點(diǎn)評 題考查了線面垂直的判定與性質(zhì),棱錐的體積計(jì)算,等體積法求距離,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,若此時(shí)滿足$\frac{S_n}{T_n}=\frac{n-3}{n+3}$,則$\frac{a_2}{{{b_{10}}+{b_{20}}}}+\frac{{{a_{28}}}}{{{b_{12}}+{b_{18}}}}$=( 。
A.1B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.曲線y=ex+1在點(diǎn)(0,2)處的切線與直線y=0和y=-x圍成的三角形的面積為(  )
A.1B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=2x+3在區(qū)間[1,5]上的最大值是( 。
A.5B.10C.13D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.自由落體的運(yùn)動(dòng)速度v=gt(g為常數(shù)),則當(dāng)t∈[1,2]時(shí),物體下落的距離為$\frac{3}{2}$g.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.三名學(xué)生相鄰坐成一排,每個(gè)學(xué)生面前的課桌上放著一枚完全相同的硬幣,三人同時(shí)拋擲自己的硬幣.若硬幣正面朝上,則這個(gè)人站起來;若硬幣正面朝下,則這個(gè)人繼續(xù)坐著,那么,沒有相鄰的兩個(gè)人站起來的概率為( 。
A.$\frac{1}{2}$B.$\frac{5}{8}$C.$\frac{1}{4}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-a|-|x+3|(a∈R).
(1)當(dāng)a=-1時(shí),解不等式f(x)≤1;
(2)若x∈[0,3]時(shí),不等式f(x)≤4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,滿足“對任意x1,x2∈(0,+∞),x1≠x2,均有$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}$>0”的是( 。
A.f(x)=2lg(x-1)B.f(x)=(x+1)2C.f(x)=e-xD.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如果實(shí)數(shù)x,y滿足線性約束條件$\left\{\begin{array}{l}2x-y≤0\\ x-3y+5≥0\\ y≥1\end{array}\right.$,則z=x-y+1的最小值等于-2.

查看答案和解析>>

同步練習(xí)冊答案