|
(1) |
解:ax2+2bx+4c由條件可得b=d=0, ∴a+4c=-6,4a+4c=0解得a=2,c=-2 故a=2,b=0,c=-2,d=0.……………………4分 |
(2) |
解:f(x)=x3-8x,∴2x2-8=2(x+2)(x-2) 令>0得x<-2或x>2,令<0得-2<x<2. ∴f(x)的單調(diào)增區(qū)間為(和[2,+;f(x)的單調(diào)減區(qū)間為[-2,2].8分 |
(3) |
證明:由(2)知f(x)在[-1,1]上單調(diào)遞減 ∴當x[-1,1]時f(1)≤f(x)≤f(-1)即≤f(x)≤亦即|f(x)|≤ 故當x1,x2時,|f(x1)|≤,|f(x2)|≤. 從而|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤+= 即|f(x1)-f(x2)|.………………………………………5分 |
科目:高中數(shù)學 來源:山西省實驗中學2006-2007學年度第一學期高三年級第三次月考 數(shù)學試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
證明下列不等式:
(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xy+yz+zx)
(理)若x,y,z∈R+,且x+y+z=xyz,則≥2
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044
|
查看答案和解析>>
科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;
(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點且經(jīng)過點D.
(1)建立適當坐標系,求橢圓C的方程;
(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.
(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com