1.命題:對(duì)?x∈R,x3-x2+1≤0的否定是$?{x_0}∈R,x_0^3-x_0^2+1>0$.

分析 根據(jù)已知中的原命題,結(jié)合全稱(chēng)命題否定的方法,可得答案.

解答 解:命題:對(duì)?x∈R,x3-x2+1≤0的否定是$?{x_0}∈R,x_0^3-x_0^2+1>0$,
故答案為:$?{x_0}∈R,x_0^3-x_0^2+1>0$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是全稱(chēng)命題,命題的否定,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC中點(diǎn),作EF⊥PB,交PB于點(diǎn)F.
(1)求證:PA∥平面EDB;
(2)求證:平面EFD⊥平面PBC
(3)求證:PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“a=1“是“函數(shù)f(x)=ax2-2x+1只有一個(gè)零點(diǎn)”的( 。
A.充要條件B.必要而不充分條件
C.充分而不必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.向量$\overrightarrow{a}$,$\overrightarrow$均為非零向量,($\overrightarrow{a}$-2$\overrightarrow$)⊥$\overrightarrow{a}$,($\overrightarrow$-2$\overrightarrow{a}$)⊥$\overrightarrow$,則$\overrightarrow{a}$,$\overrightarrow$的夾角( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某次志愿活動(dòng),需要從6名同學(xué)中選出4人負(fù)責(zé)A、B、C、D四項(xiàng)工作(每人負(fù)責(zé)一項(xiàng)),若甲、乙均不能負(fù)責(zé)D項(xiàng)工作,則不同的選擇方案有( 。
A.240種B.144種C.96種D.300種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.實(shí)數(shù)a,b滿(mǎn)足2a+2b=1,則a+b的取值范圍是( 。
A.(-∞,-2]B.(-∞,-1]C.(-∞,-4]D.$(-∞,-\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知t>0,函數(shù)f(x)=$\left\{\begin{array}{l}x{(x-t)}^{2},x≤t\\ \frac{1}{4}x,x>t\end{array}\right.$,若函數(shù)g(x)=f(f(x)-1)恰有6個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是(3,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)的定義域?yàn)镽,且f(x)>1-f′(x),f(0)=4,則不等式f(x)>1+eln3-x的解集為( 。
A.(0,+∞)B.$({\frac{1}{2},+∞})$C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={0,1,2,3},B={x|x(x-3)<0},則A∩B=( 。
A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案