某小組有三名女生,兩名男生,現(xiàn)從這個(gè)小組中任意選出一名組長(zhǎng),則其中一名女生小麗當(dāng)選為組長(zhǎng)的概率是___________

試題分析:總?cè)藬?shù)為5人,其中有小麗1人,則其中一名女生小麗當(dāng)選為組長(zhǎng)的概率是
點(diǎn)評(píng):求古典概型的概率,只有確定要求事件的數(shù)目和總的數(shù)目,然后求出它們的比例即可。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.
(Ⅰ)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率;
(Ⅱ)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

通過(guò)隨機(jī)詢(xún)問(wèn)某校110名高中學(xué)生在購(gòu)買(mǎi)食物時(shí)是否看營(yíng)養(yǎng)說(shuō)明,得到如下的列聯(lián)表:
性別與看營(yíng)養(yǎng)說(shuō)明列聯(lián)表 單位: 名
 


總計(jì)
看營(yíng)養(yǎng)說(shuō)明
50
30
80
不看營(yíng)養(yǎng)說(shuō)明
10
20
30
總計(jì)
60
50
110
(1)從這50名女生中按是否看營(yíng)養(yǎng)說(shuō)明采取分層抽樣,抽取一個(gè)容量為10的樣本,問(wèn)樣本中看與不看營(yíng)養(yǎng)說(shuō)明的女生各有多少名?
(2)根據(jù)以上列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為性別與是否看營(yíng)養(yǎng)說(shuō)明之間有關(guān)系?
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在一個(gè)口袋中裝有12個(gè)大小相同的黑球、白球和紅球。已知從袋中任意摸出2個(gè)球,至少得到一個(gè)黑球的概率是。
求:(1)袋中黑球的個(gè)數(shù);
(2)從袋中任意摸出3個(gè)球,至少得到2個(gè)黑球的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

給出下列四個(gè)命題:
①“三個(gè)球全部放入兩個(gè)盒子,其中必有一個(gè)盒子有一個(gè)以上的球”是必然事件
②“當(dāng)x為某一實(shí)數(shù)時(shí)可使”是不可能事件
③“明天順德要下雨”是必然事件
④“從100個(gè)燈泡中取出5個(gè),5個(gè)都是次品”是隨機(jī)事件.
其中正確命題的個(gè)數(shù)是                                                (    )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果根據(jù)性別與是否愛(ài)好運(yùn)動(dòng)的列聯(lián)表,得到(所以判斷性別與運(yùn)動(dòng)有關(guān),那么這種判斷出錯(cuò)的可能性為(   )(注:)
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從一個(gè)不透明的口袋中摸出紅球的概率為1/5,已知袋中紅球有3個(gè),則袋中共有除顏色外完全相同的球的個(gè)數(shù)為(  ).
A.5個(gè)B.15個(gè) C.10個(gè) D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某市為了推動(dòng)全民健身運(yùn)動(dòng)在全市的廣泛開(kāi)展,該市電視臺(tái)開(kāi)辦了健身競(jìng)技類(lèi)欄目《健身大闖關(guān)》,規(guī)定參賽者單人闖關(guān),參賽者之間相互沒(méi)有影響,通過(guò)關(guān)卡者即可獲獎(jiǎng),F(xiàn)有甲、乙、丙人參加當(dāng)天的闖關(guān)比賽,已知甲獲獎(jiǎng)的概率為,乙獲獎(jiǎng)的概率為,丙獲獎(jiǎng)而甲沒(méi)有獲獎(jiǎng)的概率為。
(Ⅰ)求三人中恰有一人獲獎(jiǎng)的概率;
(Ⅱ)求三人中至少有兩人獲獎(jiǎng)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

不透明的袋中有8張大小和形狀完全相同的卡片,卡片上分別寫(xiě)有1,1,2,2,3,3,,.現(xiàn) 從中任取3張卡片,假設(shè)每張卡片被取出的可能性相同.
(I)求取出的三張卡片中至少有一張字母卡片的概率;
(Ⅱ)設(shè)表示三張卡片上的數(shù)字之和.當(dāng)三張卡片中含有字母時(shí),則約定:有一個(gè)字母和二個(gè)相同數(shù)字時(shí)為這二個(gè)數(shù)字之和,否則,求的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案