已知橢圓=1內(nèi)有一點P(1,-1),F為橢圓的右焦點,在橢圓上有一點M,使|MP|+2|MF|取得最小值,則點M的坐標為

A.(,-1)                                                  B.(±,-1)

C.(1,-)                                                      D.(-,-1)

解析:c==1,即F(1,0).設(shè)M在右準線上的射影為N,則.∴|MN|=2|MF|,故|MP|+2|MF|=|MP|+|MN|.

顯然當MP、N共線時,|MP|+|MN|最小.由+=1,得x.

x>0,∴M的坐標為(,-1).

答案:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
5
=1
內(nèi)有一點A(1,1),F(xiàn)1、F2分別是橢圓的左、右焦點,點P是橢圓上一點.
(1)求|PA|+|PF1|的最大值、最小值及對應(yīng)的點P坐標;
(2)求|PA|+
3
2
|PF2|
的最小值及對應(yīng)的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
4
=1
內(nèi)有一點P(2,1),過點P作直線交橢圓于A、B兩點.
(1)若弦AB恰好被點P平分,求直線AB的方程;
(2)當原點O到直線AB的距離取最大值時,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
3
=1
內(nèi)有一點P(1,-1),F(xiàn)是橢圓的右焦點.
(1)求該橢圓的離心率.
(2)在橢圓上求一點M,使得|MP|+2|MF|的值最小,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鐘祥市模擬)如圖,已知橢圓
x2
2
+y2=1
內(nèi)有一點M,過M作兩條動直線AC、BD分別交橢圓于A、C和B、D兩點,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)證明:AC⊥BD;
(2)若M點恰好為橢圓中心O
(i)四邊形ABCD是否存在內(nèi)切圓?若存在,求其內(nèi)切圓方程;若不存在,請說明理由.
(ii)求弦AB長的最小值.

查看答案和解析>>

同步練習(xí)冊答案