設(shè)集合A={2a-1<x<a+1},集合B={x|x2-3x+2<0},若A∪B=B,求實(shí)數(shù)a的范圍.
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:由已知條件得當(dāng)A=∅時(shí),2a-1≥a+1,當(dāng)A≠∅時(shí),
2a-1≥1
a+1≤2
,由此能求出實(shí)數(shù)a的范圍是{a|a=1或a≥2}
解答: 解:∵集合A={2a-1<x<a+1},
集合B={x|x2-3x+2<0}={x|1<x<2},A∪B=B,
∴當(dāng)A=∅時(shí),2a-1≥a+1,解得a≥2,
當(dāng)A≠∅時(shí),
2a-1≥1
a+1≤2
,解得a=1,
綜上所述,實(shí)數(shù)a的范圍是{a|a=1或a≥2}.
點(diǎn)評(píng):本題考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意集合的交集的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|2x-1|+|2x-3|≥4的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)或求值
(1)已知x<1,化簡(jiǎn)
3(x+1)3
+
4(x-1)4
+
384

(2)化簡(jiǎn)a 
9
2
a-3
÷(
3a7
3a-13
)(a>0)
(3)求值(0.064)- 
1
3
-(-
3
4
0+[(-2)3] 
4
3
+16-0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

比較(1+
1
n+1
)n+1
(1+
1
n
)n
(n∈N)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,|
AB
|=3,|
AC
|=1,l為BC的垂直平分線且交BC于點(diǎn)D,E為l上異于D的任意一點(diǎn),F(xiàn)為線段AD上的任意一點(diǎn).
(1)求
AD
•(
AB
-
AC
)的值;
(2)判斷
AE
•(
AB
-
AC
)的值是否為一常數(shù),并說(shuō)明理由;
(3)若AC⊥BC,求
AF
•(
FB
+
FC
)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinα+cosα=
2
,則tanα+
1
tanα
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0),(a>0,b>0,O為坐標(biāo)原點(diǎn)),若A,B,C三點(diǎn)共線,則
1
a
+
2
b
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+
1
2
ax2-2x存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校高三年級(jí)共有老師120人,學(xué)歷和性別人數(shù)情況的2×2列聯(lián)表如下所示:
性別
學(xué)歷
本科5456
研究生64
(1)從具有研究生學(xué)歷的老師中任意抽取1人外出考察,求抽到女老師的概率.
(2)從研究生學(xué)歷的老師中任意抽取2人上公開(kāi)課,記抽到男老師的人數(shù)為X,求X的分布列.
(3)請(qǐng)根據(jù)以上數(shù)據(jù)判斷是否有90%的把握認(rèn)為該校高三年級(jí)老師“研究生學(xué)歷與性別有關(guān)”?
P(K2≥k00.150.100.050.025
k02.0722.7063.8415.024
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案