【題目】計(jì)算:(1) ;
(2) .
【答案】(1) ;(2).
【解析】試題分析:(1)先將根式化為分?jǐn)?shù)指數(shù)冪、再利用冪指數(shù)的運(yùn)算法則進(jìn)行化簡求值; (2) 直接利用對(duì)數(shù)的運(yùn)算法則進(jìn)行求解,化簡過程中注意避免計(jì)算錯(cuò)誤.
試題解析:(1)原式===.
(2)原式===
【方法點(diǎn)晴】本題主要考查對(duì)數(shù)的運(yùn)算、指數(shù)冪的運(yùn)算,屬于中檔題. 指數(shù)冪運(yùn)算的四個(gè)原則:(1)有括號(hào)的先算括號(hào)里的,無括號(hào)的先做指數(shù)運(yùn)算;(2)先乘除后加減,負(fù)指數(shù)冪化成正指數(shù)冪的倒數(shù);(3)底數(shù)是負(fù)數(shù),先確定符號(hào),底數(shù)是小數(shù),先化成分?jǐn)?shù),底數(shù)是帶分?jǐn)?shù)的,先化成假分?jǐn)?shù);(4)若是根式,應(yīng)化為分?jǐn)?shù)指數(shù)冪,盡可能用冪的形式表示,運(yùn)用指數(shù)冪的運(yùn)算性質(zhì)來解答(化簡過程中一定要注意等價(jià)性,特別注意開偶次方根時(shí)函數(shù)的定義域)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)將直線l: (t為參數(shù))化為極坐標(biāo)方程;
(2)設(shè)P是(1)中直線l上的動(dòng)點(diǎn),定點(diǎn)A( , ),B是曲線ρ=﹣2sinθ上的動(dòng)點(diǎn),求|PA|+|PB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xlnx+ax,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若對(duì)x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AM恒過點(diǎn)(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動(dòng)直線l過點(diǎn)P(0,﹣2),且與點(diǎn)M的軌跡交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于y軸對(duì)稱,求證:直線AC恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式:y= +10(x﹣6)2 , 其中3<x<6,a為常數(shù),已知銷售的價(jià)格為5元/千克時(shí),每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格x的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人參加某體育項(xiàng)目訓(xùn)練,近期的五次測(cè)試成績得分情況如圖所示.
(1)分別求出兩人得分的平均數(shù)與方差;
(2)根據(jù)圖和上面算得的結(jié)果,對(duì)兩人的訓(xùn)練成績作出評(píng)價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為奇函數(shù), 為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
(3)如果函數(shù),若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程是 ,圓 的極坐標(biāo)方程是 .
(1)求 與 交點(diǎn)的極坐標(biāo);
(2)設(shè) 為 的圓心, 為 與 交點(diǎn)連線的中點(diǎn),已知直線 的參數(shù)方程是 ( 為參數(shù)),求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com