【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

①函數(shù)的圖象把圓的面積兩等分;

是周期為的函數(shù);

③函數(shù)在區(qū)間上有個(gè)零點(diǎn);

④函數(shù)在區(qū)間上單調(diào)遞減.

則正確結(jié)論的序號(hào)為_______________.

【答案】①④

【解析】

化簡(jiǎn)函數(shù)的解析式,判斷該函數(shù)的奇偶性,可判斷命題①的正誤;利用特殊值法可判斷命題②的正誤;利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,可判斷命題③④的正誤.綜合可得出結(jié)論.

,定義域?yàn)?/span>.

對(duì)于命題①,

函數(shù)為奇函數(shù),該函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,而圓也關(guān)于原點(diǎn)對(duì)稱,

所以,函數(shù)的圖象把圓的面積兩等分,命題①正確;

對(duì)于命題②,,,,命題②錯(cuò)誤;

對(duì)于命題④,,所以,函數(shù)區(qū)間上單調(diào)遞減,命題④正確;

對(duì)于命題③,由于函數(shù)區(qū)間上單調(diào)遞減,且,

所以,函數(shù)在區(qū)間上有個(gè)零點(diǎn),命題③錯(cuò)誤.

因此,正確命題的序號(hào)為:①④.

故答案為:①④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是t為參數(shù)),直線l與曲線C相交于A,B兩點(diǎn).

1)求的長(zhǎng);

2)求點(diǎn)AB兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為,以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

(Ⅰ)證明:平面平面;

(Ⅱ)若的中點(diǎn),,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)質(zhì)量檢驗(yàn)員為了檢測(cè)生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測(cè)量,根據(jù)所測(cè)量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);

2)若從這個(gè)零件中尺寸位于之外的零件中隨機(jī)抽取個(gè),設(shè)表示尺寸在上的零件個(gè)數(shù),求的分布列及數(shù)學(xué)期望;

3)已知尺寸在上的零件為一等品,否則為二等品,將這個(gè)零件尺寸的樣本頻率視為概率. 現(xiàn)對(duì)生產(chǎn)線上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱個(gè). 企業(yè)在交付買家之前需要決策是否對(duì)每箱的所有零件進(jìn)行檢驗(yàn),已知每個(gè)零件的檢驗(yàn)費(fèi)用為. 若檢驗(yàn),則將檢驗(yàn)出的二等品更換為一等品;若不檢驗(yàn),如果有二等品進(jìn)入買家手中,企業(yè)要向買家對(duì)每個(gè)二等品支付元的賠償費(fèi)用. 現(xiàn)對(duì)一箱零件隨機(jī)抽檢了個(gè),結(jié)果有個(gè)二等品,以整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值作為決策依據(jù),該企業(yè)是否對(duì)該箱余下的所有零件進(jìn)行檢驗(yàn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P與點(diǎn)的距離比它到直線的距離小1.

1)求動(dòng)點(diǎn)P的軌跡C的方程;

2)設(shè)P為直線上任一點(diǎn),過點(diǎn)P作曲線C的切線,,切點(diǎn)分別為A,B,直線,y軸分別交于M,N兩點(diǎn),點(diǎn)、的縱坐標(biāo)分別為mn,求證:mn的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)在[0,π]上的單調(diào)遞減區(qū)間;

2)在銳角△ABC的內(nèi)角A,BC所對(duì)邊為a,b,c,已知fA)=﹣1,a2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了比較兩種治療某病毒的藥(分別稱為甲藥,乙藥)的療效,某醫(yī)療團(tuán)隊(duì)隨機(jī)地選取了服用甲藥的患者和服用乙藥的患者進(jìn)行研究,根據(jù)研究的數(shù)據(jù),繪制了如圖1等高條形圖

.

1)根據(jù)等高條形圖,判斷哪一種藥的治愈率更高,不用說明理由;

2)為了進(jìn)一步研究?jī)煞N藥的療效,從服用甲藥的治愈患者和服用乙藥的治愈患者中,分別抽取了10名,記錄他們的治療時(shí)間(單位:天),統(tǒng)計(jì)并繪制了如圖2莖葉圖,從莖葉圖看,哪一種藥的療效更好,并說明理由;

3)標(biāo)準(zhǔn)差s除了可以用來刻畫一組數(shù)據(jù)的離散程度外,還可以刻畫每個(gè)數(shù)據(jù)偏離平均水平的程度,如果出現(xiàn)了治療時(shí)間在(3s,3s)之外的患者,就認(rèn)為病毒有可能發(fā)生了變異,需要對(duì)該患者進(jìn)行進(jìn)一步檢查,若某服用甲藥的患者已經(jīng)治療了26天還未痊愈,請(qǐng)結(jié)合(2)中甲藥的數(shù)據(jù),判斷是否應(yīng)該對(duì)該患者進(jìn)行進(jìn)一步檢查?

參考公式:s,

參考數(shù)據(jù):48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于函數(shù)有下列結(jié)論:

,;

②函數(shù)的圖象是中心對(duì)稱圖形,且對(duì)稱中心是

③若的極大值點(diǎn),則在區(qū)間單調(diào)遞減;

④若的極小值點(diǎn),且,則有且僅有一個(gè)零點(diǎn).

其中正確的結(jié)論有________(填寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)討論函數(shù)的單調(diào)性;

2)若(其中),證明:

3)是否存在實(shí)數(shù)a,使得在區(qū)間內(nèi)恒成立,且關(guān)于x的方程內(nèi)有唯一解?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案