19.某媒體對“男女延遲退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,如表是在某單位得到的數(shù)據(jù)(人數(shù)):
(1)能否有90%以上的把握認(rèn)為對這一問題的看法與性別有關(guān)?
贊同反對合計
5611
11314
合計16925
(2)從贊同“男女延遲退休”16人中選出3人進(jìn)行陳 述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率;
(3)若以這25人的樣本數(shù)據(jù)來估計整個地區(qū)的總體數(shù)據(jù),現(xiàn)從該地區(qū)(人數(shù)很多)任選5人,記贊同“男女延遲退休”的人數(shù)為X,求X的數(shù)學(xué)期望.
附:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)求出K2,與臨界值比較,即可得出結(jié)論;
(2)求出基本事件的個數(shù),利用古典概型的概率公式求解即可;
(3)根據(jù)題意,X~B(5,$\frac{16}{25}$),利用公式求出X的數(shù)學(xué)期望.

解答 解:(1)K2=$\frac{25×(5×3-6×11)^{2}}{16×9×11×14}$≈2.932>2.706,
由此可知,有90%以上的把握認(rèn)為對這一問題的看法與性別有關(guān);
(2)記題設(shè)事件為A,則所求概率為P(A)=$\frac{{C}_{5}^{1}{C}_{11}^{2}+{C}_{5}^{2}{C}_{11}^{1}}{{C}_{16}^{3}}$=$\frac{11}{16}$;
(3)根據(jù)題意,X~B(5,$\frac{16}{25}$),∴E(X)=5×$\frac{16}{25}$=$\frac{16}{5}$.

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn)知識的運(yùn)用,考查概率的求法,考查離散型隨機(jī)變量的數(shù)學(xué)期望的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={x|-2<x<a,x∈z},若集合A中恰有3個元素,則a的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\int_{-\frac{π}{2}}^{\frac{π}{2}}$(2x-sinx)dx=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若$\frac{sin(π-α)+sin(\frac{π}{2}-α)}{sinα-cosα}$=$\frac{1}{2}$,則 tan2α( 。
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.等差數(shù)列{an}中,若a2+a5+a8=27,則a5=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow$=(3,0),則$\overrightarrow{a}$在$\overrightarrow$方向上的正射影的數(shù)量為(  )
A.-$\sqrt{5}$B.$\sqrt{5}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題:
①已知a,b,m都是正數(shù),并且a<b,則$\frac{a+m}{b+m}$>$\frac{a}$;
②在△ABC中,角A,B,C的對邊分別為a,b,c,若∠A=60°,a=7,b=8,則三角形有一解;
③若函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,則f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)=5;
④在等比數(shù)列{an}中,a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(其中n∈N*,q為公比);
⑤如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)M,N分別是CD,CC1的中點(diǎn),則異面直線A1M與DN所成角的大小是90°.
其中真命題有①③⑤(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i為虛數(shù)單位,則($\frac{1+i}{1-i}$)2=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若曲線f(x)=ax+ex存在垂直于y軸的切線,則實(shí)數(shù)a的取值范圍是(-∞,0).

查看答案和解析>>

同步練習(xí)冊答案