4.函數(shù)y=f(x)的圖象過點P(-1,3).則函數(shù)y=f(x)的圖象關于原點O對稱的圖象一定過點(1,-3).

分析 求出P關于原點的對稱點即可.

解答 解:P(-1,3)關于原點的對稱點為(1,-3),
∴函數(shù)y=f(x)的圖象關于原點O對稱的圖象一定過點(1,-3).
故答案為(1,-3).

點評 本題考查了圖象的對稱關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.直線x+$\sqrt{3}$y-2=0的傾斜角為( 。
A.30°B.120°C.150°D.60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知α是第三象限角,$f(α)=\frac{sin(π-α)cos(2π-α)tan(-α-π)}{tan(-α)sin(-π-α)}$
(1)化簡f(α);
(2)若$cos(α-\frac{3π}{2})=\frac{1}{5}$,求f(α)的值;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知復數(shù)z滿足(1+2i3)z=1+2i,則z的虛部是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.一個幾何體的三視圖如圖所示,則該幾何體的體積為$π+\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水x(單位:千克) 清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克) 的統(tǒng)計表:
x12345
 y5854392910
(1)在下面的坐標系中,描出散點圖,并判斷變量x與y的相關性;
(2)若用解析式$\widehaty=c{x^2}+d$作為蔬菜農(nóng)藥殘量$\widehaty$與用水量x的回歸方程,令ω=x2,計算平均值$\overlineω$與$\overline y$,完成以下表格(填在答題卡中),求出$\widehaty$與x的回歸方程.(c,d精確到0.1)
ω1491625
y5854392910
${ω_i}-\overlineω$-10-7-2514
${y_i}-\overline y$20161-28
(3)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請
估計需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù)$\sqrt{5}≈2.236$)
(附:線性回歸方程$\widehaty=bx+a$中系數(shù)計算公式分別為;$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=x2+2xf'(1),則f'(1)-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在點(1,f(1))處的切線與x軸平行.
(1)求實數(shù)a的值及f(x)的極值;
(2)是否存在區(qū)間$(t,t+\frac{2}{3})$(t>0),使得f(x)在此區(qū)間上存在極值點和零點?若存在,求出實數(shù)t的取值范圍,若不存在,請說明理由;
(3)如果對任意x1、x2∈[e2,+∞],有|f(x1)-f(x2)|≥k|$\frac{1}{x_1}-\frac{1}{x_2}$|,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.為調查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:
                            性別
是否需要志愿者              
需要4030
不需要160270
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)請根據(jù)上面的數(shù)據(jù)分析該地區(qū)的老年人需要志愿者提供幫助與性別有關嗎?
P(Χ2≥k)0.100.050.010
k2.7063.8416.635
x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習冊答案