為了判斷高中學生的文理科選修是否與性別有關(guān)系,隨機調(diào)查了50名學生,得到如下2×2列聯(lián)表:
理科 文科
13 10
7 20
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根據(jù)表中數(shù)據(jù),得到K2=
50(13×20-10×7)
23×27×20×30
2
≈4.844.則認為選修文科與性別有關(guān)系的可能性不低于
 
考點:獨立性檢驗的應用
專題:計算題,概率與統(tǒng)計
分析:K2≈4.844>3.841,根據(jù)P(K2≥3.841)≈0.05,這表明小概率事件發(fā)生,利用假設(shè)檢驗的基本原理,可得結(jié)論.
解答: 解:∵K2≈4.844>3.841,
∴P(K2≥3.841)≈0.05,這表明小概率事件發(fā)生.根據(jù)假設(shè)檢驗的基本原理,應該斷定“是否選修文科與性別之間有關(guān)系”成立,選修文科與性別有關(guān)系的可能性不低于95%.
故答案為:95%.
點評:本題考查獨立性檢驗,列聯(lián)表,屬于簡單題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(sin
ωx
2
,1),
n
=(
3
Acos
ωx
2
,
A
2
cosωx)(A>0,ω>0),函數(shù)f(x)=
m
n
的最大值為6,最小正周期為π.
(1)求A、ω的值;
(2)將函數(shù)y=f(x)的圖象向左平移
π
2
個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[0,
6
]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校為了選拔學生參加“XX市中學生知識競賽”,先在本校進行選拔測試(滿分150分),若該校有100名學生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估算這100名學生參加選拔測試的平均成績;
(Ⅱ)若通過學校選拔測試的學生將代表學校參加市知識競賽,知識競賽分為初賽和復賽,初賽中每人最多有5次答題機會,累計答對3題或答錯3題即終止,答對3題者方可參加復賽.假設(shè)參賽者甲答對每一個題的概率都是
2
3
,求甲在初賽中答題個數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
25
+
y2
16
=1,過直線x=
25
3
上一點P作橢圓C的兩條切線,切點分別為A,B.M為橢圓C的右頂點,則∠AMB的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos(
π
4
-α)=
4
5
,
π
4
<α<
π
2
,則cos(
4
+α)+cos(
π
4
+α)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=5log23.4,b=5log43.6,c=(
1
5
)
log30.3
,則a、b、c的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線kx2-y2=1的任一條漸近線與直線2x+y+1=0垂直,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用0,1,2,…,9這十個數(shù)字可以組成
 
個沒有重復數(shù)字的兩位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+2y≥1
x-y≤1
y-1≤0
,則z=x-2y的最大值為
 

查看答案和解析>>

同步練習冊答案