5.已知點A(0,-4),B(3,2),P為曲線y=x2上一點,要使△ABP的面積最小,則點P的坐標為(1,1).

分析 求出直線AB的斜率,然后求出函數(shù)的導數(shù)利用導數(shù)值與KAB相等,求出切點坐標.

解答 解:由題意可知KAB=$\frac{2+4}{3-0}$=2,在拋物線上求一點P使△ABP的面積最小,
這點就是與AB平行與拋物線相切時的切點坐標,
設切點為(a,a2),則y=x2,可得y′=2x,y′|x=a=2a,2a=2,解得a=1,
所以切點坐標P(1,1).
故答案為:(1,1).

點評 本題考查三角形面積的計算,考查導數(shù)知識的運用,正確轉(zhuǎn)化是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知集合A={x|x2+ax+b=0}={1},求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.四棱錐P-ABCD的底面ABCD是矩形,側(cè)面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,則該四棱錐P-ABCD的外接球的體積為$\frac{20\sqrt{5}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+ax+2.
(Ⅰ)求實數(shù)a的值,使函數(shù)y=f(x)在區(qū)間[-5,5]上為偶函數(shù);
(Ⅱ)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù);
(Ⅲ)求f(x)在區(qū)間[-5,5]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-3x+1
(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)求曲線在點(0,f(0))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設等差數(shù)列{an}的前n項和為Sn,且a3=2,S7=21.
(1)求數(shù)列{an}的通項公式;
(2)設bn=2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在一個暗箱中裝有5個手感、材質(zhì)、大小都相同的球,其中有3個黑球,2個白球.
(1)如果不放回地依次抽取2個球,則在第1次抽到黑球的條件下,第2次抽到黑球的概率.
(2)如果從暗箱中任取2球,求在已知其中一個球為黑球的條件下,另一個球也是黑球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若0≤x≤1,0≤y≤4,則xy2-y的最大值為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知數(shù)列{an}是等差數(shù)列,a2+a7=12,a4a5=35,則an=2n-3或15-2n.

查看答案和解析>>

同步練習冊答案