精英家教網 > 高中數學 > 題目詳情
設等差數列{an}的前n項的和為Sn,且S4=-62,S6=-75,求:
(1){an}的通項公式an
(2)|a1|+|a2|+|a3|+…+|a14|.
分析:設出等差數列的首項和公差,由題意列式求解首項和公差.
(1)直接代入等差數列的通項公式求解;
(2)由題意可知等差數列是遞增數列,由通項公式求出負值項,然后去絕對值求解|a1|+|a2|+|a3|+…+|a14|.
解答:解:設等差數列首項為a1,公差為d,依題意得
4a1+6d=-62
6a1+15d=-75

解得:a1=-20,d=3.
(1)an=a1+(n-1)d=3n-23,
(2)∵a1=-20,d=3,∴等差數列{an}是遞增數列,
設ak≤0,且ak+1≥0,得3k-23≤0,且3(k+1)-23≥0,解得
20
3
≤k≤
23
3

又∵k∈Z,∴k=7.
即數列的前7項均為負值.
∴|a1|+|a2|+|a3|+…+|a14|=-(a1+a2+…+a7)+(a8+a9+…+a14)=S14-2S7=147.
點評:本題考查了等差數列的通項公式,考查了等差數列的和的求法,解答此題的關鍵在于分析出等差數列從第幾項起為正數,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數k=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•山東)設等差數列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數列{an}的通項公式;
(2)設數列{bn}的前n項和為TnTn+
an+12n
(λ為常數).令cn=b2n(n∈N)求數列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,若S9=81,S6=36,則S3=(  )

查看答案和解析>>

同步練習冊答案