12.已知ω>0,函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上單調(diào)遞減,則實數(shù)ω的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

分析 由條件利用正弦函數(shù)的減區(qū)間可得 $\left\{\begin{array}{l}{ω•\frac{π}{2}+\frac{π}{4}≥\frac{π}{2}}\\{ω•π+\frac{π}{4}≤\frac{3π}{2}}\end{array}\right.$,由此求得實數(shù)ω的取值范圍.

解答 解:∵ω>0,函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上單調(diào)遞減,則$\left\{\begin{array}{l}{ω•\frac{π}{2}+\frac{π}{4}≥\frac{π}{2}}\\{ω•π+\frac{π}{4}≤\frac{3π}{2}}\end{array}\right.$,
求得$\frac{1}{2}$≤ω≤$\frac{5}{4}$,
故選:A.

點評 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若集合A={x|x<3},下列選項中正確的是( 。
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若圓C的圓心坐標(biāo)為(0,0),且圓C經(jīng)過點M(3,4),則圓C的半徑為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知命題p:|x-a|<4,命題q:(x-1)(2-x)>0,若p是q的必要不充分條件,則實數(shù)a的取值范圍是[-2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={2,3,4},B={a+2,a},若A∩B=B,則∁AB={3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)的定義域為[0,4],則函數(shù)g(x)=f(x)+f(x2)的定義域為( 。
A.[0,2]B.[0,16]C.[-2,2]D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=ax-2+1(a>0,a≠1)的圖象必過( 。
A.(0,1)B.(2,2)C.(2,0)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)是奇函數(shù),且當(dāng)x<0時,函數(shù)解析式為:f(x)=1-2x,則當(dāng)x>0時,該函數(shù)的解析式為( 。
A.f(x)=-1-2xB.f(x)=1+2xC.f(x)=-1+2xD.f(x)=1-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.己知函數(shù)f(x)=log3(x+1),若f(α)=1,則α=(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案