【題目】某學(xué)校高三年級有、兩個自習(xí)教室,甲、乙、丙名學(xué)生各自隨機(jī)選擇其中一個教室自習(xí),則甲、乙兩人不在同一教室上自習(xí)的概率為________.

【答案】

【解析】

利用乘法計數(shù)原理可計算出甲、乙、丙名學(xué)生各自隨機(jī)選擇其中一個教室自習(xí)共有種,利用分步乘法計數(shù)原理計算出甲、乙兩人不在同一教室上自習(xí)的排法種數(shù),然后利用古典概型的概率公式可計算出所求事件的概率.

由題意可知,甲、乙、丙名學(xué)生各自隨機(jī)選擇其中一個教室自習(xí)共有種,

甲、乙兩人不在同一教室上自習(xí),可先考慮甲在、兩個自習(xí)教室選一間教室自習(xí),然后乙在另一間教室自習(xí),則丙可在、兩個自習(xí)教室隨便選一間自習(xí)教室自習(xí),由分步計數(shù)原理可知,有種選擇.

因此,甲、乙兩人不在同一教室上自習(xí)的概率為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動時,判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用細(xì)鋼管焊接而成的花壇圍欄構(gòu)件如圖所示,它的外框是一個等腰梯形PQRS,內(nèi)部是一段拋物線和一根橫梁,拋物線的頂點(diǎn)與梯形上底中點(diǎn)是焊接點(diǎn)O,梯形的腰緊靠在拋物線上,兩條腰的中點(diǎn)是梯形的腰、拋物線以及橫梁的焊接點(diǎn)A,B,拋物線與梯形下底的兩個焊接點(diǎn)為C,D,已知梯形的高是40厘米,C,D兩點(diǎn)間的距離為40厘米.

1)求橫梁AB的長度;

2)求梯形外框的用料長度;

(注:細(xì)鋼管的粗細(xì)等因素忽略不計,結(jié)果精確到1厘米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的直角坐標(biāo)方程,并求時直線的普通方程;

2)直線和曲線交于、兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項,對任意的,都有,數(shù)列是公比不為的等比數(shù)列.

1)求實數(shù)的值;

2)設(shè)數(shù)列的前項和為,求所有正整數(shù)的值,使得恰好為數(shù)列中的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△中, , 分別為 的中點(diǎn), 的中點(diǎn), , 將△沿折起到△的位置,使得平面平面, 的中點(diǎn),如圖2

1求證: 平面

2求證:平面平面;

3線段上是否存在點(diǎn),使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓錐中,,上的動點(diǎn),的直徑,,的兩個三等分點(diǎn),,記二面角,的平面角分別為,若,則的最大值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級有男生人,編號為,;女生人,編號為,,,.為了解學(xué)生的學(xué)習(xí)狀態(tài),按編號采用系統(tǒng)抽樣的方法從這名學(xué)生中抽取人進(jìn)行問卷調(diào)查,第一組抽到的號碼為,現(xiàn)從這名學(xué)生中隨機(jī)抽取人進(jìn)行座談,則這人中既有男生又有女生的概率是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案