9.圓心為O(-1,3),半徑為2的圓的方程為( 。
A.(x-1)2+(y+3)2=2B.(x+1)2+(y-3)2=4C.(x-1)2+(y+3)2=4D.(x+1)2+(y-3)2=2

分析 以(a,b)為圓心,r為半徑的圓是:(x-a)2+(y-b)2=r2,結(jié)合題意,將圓心坐標(biāo),半徑值代入即可得答案.

解答 解:∵圓的圓心坐標(biāo)為(-1,3),半徑為2,
∴圓的標(biāo)準(zhǔn)方程為:(x+1)2+(y-3)2=4.
故選:B.

點(diǎn)評 本題考查圓的標(biāo)準(zhǔn)方程,關(guān)鍵是要掌握圓的標(biāo)準(zhǔn)方程的形式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a∈R,命題$p:\frac{x^2}{2a}+\frac{y^2}{3a-6}=1$表示的曲線是焦點(diǎn)在x軸上的橢圓;命題q:不等式x2+(a+4)x+16>0的解集為R,若p∧q是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a+\overrightarrow b=(1,3)$,$\overrightarrow a-\overrightarrow b=(3,7)$,則$\overrightarrow a•\overrightarrow b$=( 。
A.-12B.-20C.12D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某單位委托一家網(wǎng)絡(luò)調(diào)查公司對單位1000名員工進(jìn)行了QQ運(yùn)動數(shù)據(jù)調(diào)查,繪制了日均行走步數(shù)(千步)的頻率分布直方圖,如圖所示(每個分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示運(yùn)動量在[4,6)之間(單位:千步))
(Ⅰ)求單位職員日均行走步數(shù)在[6,8)的人數(shù)
(Ⅱ)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)
(Ⅲ)記日均行走步數(shù)在[4,8)的為欠缺運(yùn)動群體,[8,12)的為適度運(yùn)動群體,[12,16)的為過量運(yùn)動群體,從欠缺運(yùn)動群體和過量運(yùn)動群體中用分層抽樣方法抽取5名員工,并在這5名員工中隨機(jī)抽取2名與健康監(jiān)測醫(yī)生面談,求過量運(yùn)動群體中至少有1名員工與健康監(jiān)測醫(yī)生面談的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,A、B、C為它的三個內(nèi)角,設(shè)向量$\overrightarrow{p}$=(cos$\frac{B}{2}$,sin$\frac{B}{2}$),$\overrightarrow{q}$=(cos$\frac{B}{2}$,-sin$\frac{B}{2}$),且$\overrightarrow{p}$與$\overrightarrow{q}$的夾角為$\frac{π}{3}$.
(1)求角B的大。
(2)已知tanC=$\frac{\sqrt{3}}{2}$,求$\frac{sin2AcosA-sinA}{sin2Acos2A}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.觀察下列一組數(shù)據(jù)
a1=1,
a2=3+5,
a3=7+9+11,
a4=13+15+17+19,

則a10從左到右第一個數(shù)是(  )
A.91B.89C.55D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(Ⅰ)△ABC的三個頂點(diǎn)分別為A(-1,5),B(-2,-2),C(5,-5),求其外接圓的方程.
(Ⅱ)求經(jīng)過點(diǎn)(-5,2),焦點(diǎn)為($\sqrt{6}$,0)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.調(diào)查某車間20名工人的年齡,第i名工人的年齡為ai,具體數(shù)據(jù)見表:
i1234567891011121314151617181920
ai2928301931283028323130312929313240303230
(1)作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的眾數(shù)和極差;
(3)執(zhí)行如圖所示的算法流程圖(其中$\overline{a}$是這20名工人年齡的平均數(shù)),求輸出的S值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤k\end{array}\right.$,若z=3x-y的最大值為3,則實(shí)數(shù)k的值為( 。
A.-1B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案