9.過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)且斜率為2的直線與C交于A、B兩點(diǎn),以AB為直徑的圓與C的準(zhǔn)線有公共點(diǎn)M,若點(diǎn)M的縱坐標(biāo)為2,則p的值為4.

分析 取AB的中點(diǎn)N,分別過(guò)A、B、N作準(zhǔn)線的垂線AP、BQ、MN,垂足分別為P、Q、M,作出圖形,利用拋物線的定義及梯形的中位線性質(zhì)可推導(dǎo),|MN|=$\frac{1}{2}$|AB|,從而可判斷圓與準(zhǔn)線的位置關(guān)系:相切,確定拋物線y2=2px的焦點(diǎn),設(shè)直線AB的方程,與拋物線方程聯(lián)立,由韋達(dá)定理可得AB的中點(diǎn)M的縱坐標(biāo)為$\frac{p}{2}$,由條件即可得到p=4.

解答 解:取AB的中點(diǎn)N,分別過(guò)A、B、N作準(zhǔn)線的垂線AP、BQ、MN,
垂足分別為P、Q、M,如圖所示:
由拋物線的定義可知,|AP|=|AF|,|BQ|=|BF|,
在直角梯形APQB中,|MN|=$\frac{1}{2}$(|AP|+|BQ|)
=$\frac{1}{2}$(|AF|+|BF|)=$\frac{1}{2}$|AB|,
故圓心N到準(zhǔn)線的距離等于半徑,
即有以AB為直徑的圓與拋物線的準(zhǔn)線相切
由M的縱坐標(biāo)為2,即N的縱坐標(biāo)為2,
拋物線y2=2px的焦點(diǎn)坐標(biāo)為($\frac{p}{2}$,0),
設(shè)直線AB的方程為y=2(x-$\frac{p}{2}$),即x=$\frac{1}{2}$y+$\frac{p}{2}$,
與拋物線方程y2=2px聯(lián)立,消去x,得y2-py-p2=0
由韋達(dá)定理可得AB的中點(diǎn)N的縱坐標(biāo)為$\frac{p}{2}$,
即有p=4,
故答案為:4.

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系、直線圓的位置關(guān)系,考查拋物線的定義,考查數(shù)形結(jié)合思想,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x+2y-4≤0}\\{x-y-1≤0}\end{array}\right.$,則x+y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問(wèn)題:
分組頻數(shù)頻率
50.5~60.540.08
60.5~70.5a0.16
70.5~80.510b
80.5~90.5160.32
90.5~100.5cd
合計(jì)501
(1)求實(shí)數(shù)a,b,c,d的值;
(2)補(bǔ)全頻數(shù)條形圖;
(3)若成績(jī)?cè)?5.5~100.5分的學(xué)生為一等獎(jiǎng),問(wèn)獲得一等獎(jiǎng)的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某三棱柱的三視圖如圖所示,在該三棱錐外接球的表面積是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.下列命題中所有正確的序號(hào)是④⑤.
①存在$x∈(0,\frac{π}{2})$,使$sinx+cosx=\frac{1}{3}$;
②存在區(qū)間(a,b),使y=cosx為減函數(shù)而sinx<0;
③y=tanx在定義域內(nèi)為增函數(shù);
④y=cos2x+sin($\frac{π}{2}$-x)有最大值2,且是偶函數(shù);
⑤若函數(shù)f(x)=asin2x+btanx+1,且f(-3)=5,則f(π+3)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在甲、乙兩個(gè)盒子中分別裝有標(biāo)號(hào)為1,2,3,4的四個(gè)球,現(xiàn)從甲乙兩個(gè)盒子中各取出1個(gè)球,球的標(biāo)號(hào)分別記做a,b,每個(gè)球被取出的可能想相等.
(1)求a+b能被3整除的概率;
(2)若|a-b|≤1則中獎(jiǎng),求中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,而終邊經(jīng)過(guò)點(diǎn)P(1,2).
(1)求tanα的值;
(2)求$\frac{\sqrt{2}sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合A={0,1,2,3,4},B=$\left\{{\left.{x∈R|\frac{x-4}{x-1}≤0}\right\}}\right.$,則A∩B=( 。
A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{x|1<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.定義函數(shù)f(x)={x•{x}},其中{x}表示不小于x的最小整數(shù),如{1.2}=2,{-2.6}=-2.當(dāng)x∈(0,n](n∈N*)時(shí),函數(shù)f(x)的值域記為An,記An中元素的個(gè)數(shù)為an,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{10}}}}$=$\frac{20}{11}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案