【題目】已知函數(shù) ,θ∈[0,2π)
(1)若函數(shù)f(x)是偶函數(shù):①求tanθ的值;②求 的值.
(2)若f(x)在 上是單調(diào)函數(shù),求θ的取值范圍.
【答案】
(1)解:∵函數(shù)f(x)是偶函數(shù),∴ ∴
①tanθ=
② =
(2)解:f(x)的對稱軸為 ,
或 ,
或 (9分),
∵θ∈[0,2π),∴ ,
∴ ,∴ ,
∴ , ,
∴
【解析】(1)運用偶函數(shù)的圖形關(guān)于y軸對稱,可得 ,求得θ,即可得到tanθ;再由同角的基本關(guān)系式,化為tanθ的式子,即可得到所求值;(2)由題意可得 或 ,結(jié)合正弦函數(shù)的圖形和性質(zhì),計算即可得到所求范圍.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線y2=2px(p>0)的焦點,斜率為2 的直線交拋物線于A(x1 , y1)和B(x2 , y2)(x1<x2)兩點,且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標原點,C為拋物線上一點,若 ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點F1 , F2分別是雙曲線 的左、右焦點,過F1且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABF2是銳角三角形,則該雙曲線離心率的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】全集U={﹣1,0,1,2,3,4,5,6 },A={3,4,5 },B={1,3,6 },那么集合{ 2,﹣1,0}是( )
A.
B.
C.UA∩UB
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在利用“五點法”作函數(shù)f(x)=Asin(ωx+)+t(其中A>0, )的圖象時,列出了如表格中的部分數(shù)據(jù).
x |
|
|
| ||
ωx+ | 0 |
| π |
| 2π |
f(x) | 2 | 6 | 2 | ﹣2 | 2 |
(1)請將表格補充完整,并寫出f(x)的解析式.
(2)若 ,求f(x)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)= + 的定義域是A,集合B={x|m≤x≤m+2}.
(1)求定義域A;
(2)若A∪B=A,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(0,2)和圓C:x2+y2﹣8x+11=0.
(1)求過點P,點C和原點三點圓的方程;
(2)求以點P為圓心且與圓C外切的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com