【題目】下列說法中正確的有______.

①空間中三條直線交于一點,則這三條直線共面;

②一個平行四邊形確定一個平面;

③若一個角的兩邊分別平行于另一個角的兩邊,則這兩個角相等;

④已知兩個不同的平面,若,,且,則點在直線.

【答案】2

【解析】

對于①舉出反例,正方體的一個頂點處的3條棱;根據(jù)兩條平行線可以確定一個面可判斷②;根據(jù)等角定理可判斷③;直接根據(jù)公理可判斷④.

反例:正方體的一個頂點處的3條棱,確定3個平面,所以①不正確;

由于平行四邊形對邊平行,結(jié)合兩條平行線可以確定一個面,可得②正確;

如果一個角的兩邊分別平行于另一個角的兩邊,則這兩個角相等或互補,所以③不正確;

,且,則A上,滿足平面的基本性質(zhì),所以④正確,

即正確的個數(shù)有2個,

故答案為:2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,平面平面, ,點在棱上.

(Ⅰ)求證:直線平面;

(Ⅱ)若平面,求證: ;

(Ⅲ)是否存在點,使得四面體的體積等于四面體?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x2exb,其中b∈R.

(Ⅰ)證明:對于任意x1x2∈(﹣∞,0],都有fx1)﹣fx2;

(Ⅱ)討論函數(shù)fx)的零點個數(shù)(結(jié)論不需要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集具有性質(zhì):對任意的 ,,使得成立.

Ⅰ)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

Ⅱ)求證;

Ⅲ)若,求數(shù)集中所有元素的和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學(xué)生對學(xué)校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺綜合頻道(CCTV-1)和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了兩個地區(qū)的名觀眾,得到如下的列聯(lián)表:

已知在被調(diào)查的名觀眾中隨機抽取名,該觀眾是地區(qū)當(dāng)中非常滿意的觀眾的概率為,且.

(1)現(xiàn)從名觀眾中用分層抽樣的方法抽取名進(jìn)行問卷調(diào)查,則應(yīng)抽取滿意地區(qū)的人數(shù)各是多少.

(2)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.

(3)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機抽取人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,求的分布列和期望.

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過站的地鐵票價如下表:

乘坐站數(shù)

票價(元)

現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為 ;甲、乙乘坐超過站的概率分別為, .

(1)求甲、乙兩人付費相同的概率;

(2)設(shè)甲、乙兩人所付費用之和為隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的食堂中,食堂每天以元/斤的價格購進(jìn)米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂某天購進(jìn)了80斤米粉,以(單位:斤)(其中)表示米粉的需求量, (單位:元)表示利潤.

(Ⅰ)計算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);

(Ⅱ) 表示為的函數(shù);

Ⅲ)根據(jù)直方圖估計該天食堂利潤不少于760元的概率.

查看答案和解析>>

同步練習(xí)冊答案