已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17;
(1)求f(x);
(2)求當(dāng)x∈(-1,3]時(shí),f(x)的值域.
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)的值域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意設(shè)f(x)=ax+b,利用f(x)滿足3f(x+1)-2f(x-1)=2x+17,利用恒等式的性質(zhì)即可得出;
(2)由f(x)的單調(diào)性,即可得到值域.
解答: 解:(1)由題意設(shè)f(x)=ax+b,(a≠0).
∵f(x)滿足3f(x+1)-2f(x-1)=2x+17,
∴3[a(x+1)+b]-2[a(x-1)+b]=2x+17,
化為ax+(5a+b)=2x+17,
a=2
5a+b=17
,解得
a=2
b=7

∴f(x)=2x+7.
(2)∵f(x)在R上單調(diào)遞增,
∴當(dāng)x∈(-1,3]時(shí),f(x)∈(-2+7,2×3+7],
∴f(x)的值域?yàn)椋?,13].
點(diǎn)評(píng):本題考查了“待定系數(shù)法”求一次函數(shù)的解析式和恒等式的性質(zhì),同時(shí)考查一次函數(shù)的單調(diào)性及運(yùn)用:求值域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=(1+2x28;        
(2)y=
1
1-x2
;
(3)y=sin 2x-cos 2x;      
(4)y=cos x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α=-1910°.
(1)把角α寫成β+k•360°(k∈Z,0°≤β<360°)的形式,指出它是第幾象限的角;
(2)求出θ的值,使θ與α的終邊相同,且-720°≤θ<0°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形OABC和平行四邊形OA1B1C1的部分頂點(diǎn)坐標(biāo)為:A(-1,0),B(-1,2),A1
1
2
,1),C1(2,0).
(Ⅰ)求將矩形OABC變?yōu)槠叫兴倪呅蜲A1B1C1的線性變換對(duì)應(yīng)的矩陣M;
(Ⅱ)矩陣M是否存在特征值?若存在,求出矩陣M的所有特征值及其對(duì)應(yīng)的一個(gè)特征向量;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且
cosB
cosC
=
b
2a-c

(1)求角B的大。
(2)△ABC的外接圓半徑是
1
2
,求三角形周長(zhǎng)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3-
1
2
x2-2x+5.
(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當(dāng)x∈[-1,2]時(shí),f(x)<m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)寫出兩角差的余弦公式cos(α-β)=
 
,并加以證明;
(Ⅱ)并由此推導(dǎo)兩角差的正弦公式sin(α-β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,2),
b
=(-3,2),
當(dāng)k=
 
時(shí),(1)k
a
+
b
a
-3
b
垂直;
當(dāng)k=
 
時(shí),(2)k
a
+
b
a
-3
b
平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)+1(ω>0)的最小正周期為π.
(1)求ω;
(2)求f(x)的單調(diào)遞增區(qū)間.
(3)求f(x)在區(qū)間[0,
2
3
π]上的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案