8.已知各項(xiàng)均不相等的等差數(shù)列{an}的前五項(xiàng)和S5=20,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)設(shè)數(shù)列{an}的公差為d,運(yùn)用等差數(shù)列的求和公式和等比數(shù)列的性質(zhì),解方程可得a1=2,d=1,再由等差數(shù)列的通項(xiàng)即可得到;
(2)求得bn=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,運(yùn)用裂項(xiàng)相消求和,求得Tn

解答 解:(1)設(shè)數(shù)列{an}的公差為d,
由已知得$\left\{\begin{array}{l}{{S}_{5}=20}\\{{{a}_{3}}^{2}={a}_{1}{a}_{7}}\end{array}\right.$,
即為$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=20}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,
即$\left\{\begin{array}{l}{{a}_{1}+2d=4}\\{2etwaspn^{2}={a}_{1}d}\end{array}\right.$,由d≠0,即有$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=1}\end{array}\right.$,
故an=2+n-1=n+1;
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴前n項(xiàng)和Tn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2(n+2)}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)和求和公式的運(yùn)用,同時(shí)考查等比數(shù)列的性質(zhì),以及數(shù)列的求和方法:裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知長(zhǎng)方體ABCD-A1B1C1D1內(nèi)接于球O,底面ABCD是正方形,E為AA1的中點(diǎn),OA⊥平面BDE,則$\frac{{A{A_1}}}{AB}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x∈(1,+∞),2x-1-1>0,則下列敘述正確的是(  )
A.¬p為:?x∈(1,+∞),2x-1-1≤0B.¬p為:?x∈(1,+∞),2x-1-1<0
C.¬p為:?x∈(-∞,1],2x-1-1>0D.¬p是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在極坐標(biāo)系中,已知圓C的方程是ρ=4,直線l的方程是$ρsin(θ+\frac{π}{4})=\sqrt{2}$.
(1)將直線l與圓C的極坐標(biāo)方程化為直角坐標(biāo)方程
(2)求直線l與圓C相交所得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{16}{3}$C.8D.$\frac{128}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.雙曲線$\frac{x^2}{m}-\frac{y^2}{6}=1$的一條漸近線方程為y=x,則實(shí)數(shù)m的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別為F1、F2,若橢圓上存在點(diǎn)P,滿足∠F1PF2=120°,則該橢圓的離心率的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|x2-3x-10<0},B={x|m+1≤x≤2m-1}.
(1)當(dāng)m=3時(shí),求集合(∁UA)∩B;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.閱讀下面材料,嘗試類比探究函數(shù)y=x2-$\frac{1}{{x}^{2}}$的圖象,寫出圖象特征,并根據(jù)你得到的結(jié)論,嘗試猜測(cè)作出函數(shù)對(duì)應(yīng)的圖象.
閱讀材料:
我國(guó)著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.
在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征.我們來看一個(gè)應(yīng)用函數(shù)的特征研究對(duì)應(yīng)圖象形狀的例子.
對(duì)于函數(shù)y=$\frac{1}{x}$,我們可以通過表達(dá)式來研究它的圖象和性質(zhì),如:
(1)在函數(shù)y=$\frac{1}{x}$中,由x≠0,可以推測(cè)出,對(duì)應(yīng)的圖象不經(jīng)過y軸,即圖象與y軸不相交;由y≠0,可以推測(cè)出,對(duì)應(yīng)的圖象不經(jīng)過x軸,即圖象與x軸不相交.
(2)在函數(shù)y=$\frac{1}{x}$中,當(dāng)x>0時(shí)y>0;當(dāng)x<0時(shí)y<0,可以推測(cè)出,對(duì)應(yīng)的圖象只能在第一、三象限;
(3)在函數(shù)y=$\frac{1}{x}$中,若x∈(0,+∞)則y>0,且當(dāng)x逐漸增大時(shí)y逐漸減小,可以推測(cè)出,對(duì)應(yīng)的圖象越向右越靠近x軸;若x∈(-∞,0),則y<0,且當(dāng)x逐漸減小時(shí)y逐漸增大,可以推測(cè)出,對(duì)應(yīng)的圖象越向左越靠近x軸;
(4)由函數(shù)y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函數(shù),可以推測(cè)出,對(duì)應(yīng)的圖象關(guān)于原點(diǎn)對(duì)稱.
結(jié)合以上性質(zhì),逐步才想出函數(shù)y=$\frac{1}{x}$對(duì)應(yīng)的圖象,如圖所示,在這樣的研究中,我們既用到了從特殊到一般的思想,由用到了分類討論的思想,既進(jìn)行了靜態(tài)(特殊點(diǎn))的研究,又進(jìn)行了動(dòng)態(tài)(趨勢(shì)性)的思考.讓我們享受數(shù)學(xué)研究的過程,傳播研究數(shù)學(xué)的成果.

查看答案和解析>>

同步練習(xí)冊(cè)答案