精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=在(-1,+∞)上連續(xù),則實數   
【答案】分析:已知函數f(x)=在(-1,+∞)上連續(xù),可以對-1<x<1上的函數解析式化簡,使其在端點處有意義,令兩段上函數值在端點處相等,求a
解答:解:當-1<x<1時,f(x)=
∵函數f(x)在(-1,+∞)上連續(xù)
=-
∴1+a=2
∴a=1
故答案為:1.
點評:本題考查函數的連續(xù)性,解題的關鍵是對-1<x<1時的函數的解析式進行整理,以使得函數在x=1處有意義,然后利用函數值相等建立方程求出參數的值.這是知道函數在某點處連續(xù)求參數的常用方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)定義在[-1,1]上,設g(x)=f(x-c)和h(x)=f(x-c2)兩個函數的定義域分別為A和B,若A∩B=∅,則實數c的取值集合為
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在(-1,1)上,對于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
),且當x<0時,f(x)>0;
(1)驗證函數f(x)=ln
1-x
1+x
是否滿足這些條件;
(2)判斷這樣的函數是否具有奇偶性和其單調性,并加以證明;
(3)若f(-
1
2
)=1,試解方程f(x)=-
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax在(O,2)內的值域是(a2,1),則函數y=f(x)的圖象是( �。�

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1
,對任意x,y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又數列{an}滿足a1=
1
2
an+1=
2a
1+
a
2
n

(I)在(-1,1)內求一個實數t,使得f(t)=2f(
1
2
)
;
(II)求證:數列{f(an)}是等比數列,并求f(an)的表達式;
(III)設cn=
n
2
bn+2,bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)
,是否存在m∈N*,使得對任意n∈N*,cn
6
7
lo
g
2
2
m-
18
7
log2m
恒成立?若存在,求出m的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

凸函數的性質定理為:如果函數f(x)在區(qū)間D上是凸函數,則對D內的任意x1,x2,…,xn都有
f(x1)+f(x2)+…+f(xn)
n
≤f(
x1+x2+…+xn
n
)
.已知函數f(x)=sinx在(0,π)上是凸函數,則
(1)求△ABC中,sinA+sinB+sinC的最大值.
(2)判斷f(x)=2x在R上是否為凸函數.

查看答案和解析>>

同步練習冊答案