已知橢圓,、是橢圓的左右焦點,且橢圓經(jīng)過點.
(1)求該橢圓方程;
(2)過點且傾斜角等于的直線,交橢圓于、兩點,求的面積.
(1);(2)

試題分析:(1)求橢圓標準方程,就是要求,也即要找到關(guān)于的兩個條件,本題中有,又有橢圓過點,把點坐標代入橢圓方程又得到一個關(guān)系式,解之即得;(2)本題是直線與橢圓相交問題,如果交點坐標能簡單求出,那么我們就求出交點坐標,然后再解題,但一般情況下,這類問題中都含有參數(shù),或者交戰(zhàn)坐標很復(fù)雜,不易求得,這時我們采取“設(shè)而不求”的方法,即設(shè)交點為,,在把直線方程代入橢圓(或其他圓錐曲線)方程消去得關(guān)于的二次方程,則有,,則,本題有,由此可求出面積.
(1),則橢圓方程為.      6分
(2)設(shè),,直線.        8分
,        10
,

.      14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2014·綿陽模擬]在平面直角坐標系xOy中,橢圓C:=1的左、右焦點分別是F1、F2,P為橢圓C上的一點,且PF1⊥PF2,則△PF1F2的面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點(,都在軸上方),且
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P(x,y)為橢圓上一點,F為橢圓C的右焦點,若點M滿足,則的最小值為(      )
A.B.3C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個焦點恰好與拋物線的焦點重合.
求橢圓的方程;
設(shè)橢圓的上頂點為,過點作橢圓的兩條動弦,若直線斜率之積為,直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標;若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:離心率是,過點,且右支上的弦過右焦點
(1)求雙曲線C的方程;
(2)求弦的中點的軌跡E的方程;
(3)是否存在以為直徑的圓過原點O?,若存在,求出直線的斜率k 的值.若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2分別是橢圓(a>b>0)的左、右焦點,若在直線x=上存在P,使線段PF1的中垂線過點F2,則橢圓離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的一個焦點與拋物線的焦點重合,則該橢圓的離心率是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓的兩個焦點,過的直線交橢圓于兩點,,
(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案