【題目】已知橢圓的中心為坐標原點,其離心率為,橢圓的一個焦點和拋物線的焦點重合.

(1)求橢圓的方程

(2)過點的動直線交橢圓、兩點,試問:在平面上是否存在一個定點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點,若存在,說出點的坐標若不存在,說明理由

【答案】(1)(2)定點

【解析】

試題分析:(1)先設(shè)處橢圓的標準方程,根據(jù)離心率求的a和c的關(guān)系,進而根據(jù)拋物線的焦點求得c,進而求得a,則b可得,進而求的橢圓的標準方程;(2)若直線l與x軸重合,則以AB為直徑的圓是,若直線l垂直于x軸,則以AB為直徑的圓是.聯(lián)立兩個圓的方程求得其交點的坐標,推斷兩圓相切,進而可判斷因此所求的點T如果存在,只能是這個切點.證明時先看直線l垂直于x軸時,以AB為直徑的圓過點T(1,0).再看直線l不垂直于x軸,可設(shè)出直線方程,與圓方程聯(lián)立消去y,記點A ,B ,根據(jù)韋達定理求得的表達式,代入的表達式中,求得,進而推斷TATB,即以AB為直徑的圓恒過點T(1,0).

試題解析:(1)拋物線焦點的坐標為,則橢圓的焦點在軸上

設(shè)橢圓方程為

由題意可得,,,

橢圓方程為 ……3分

(2)若直線軸重合,則以為直徑的圓是

若直線垂直于軸,則以為直徑的圓是

即兩圓相切于點 ……5分因此所求的點如果存在,只能是,事實上,點就是所求的點. ……6分

證明:當直線垂直于軸時,以為直徑的圓過點,若直線不垂直于軸,

可設(shè)直線 設(shè)點,

, ……9

, ,

……11

即: 故以為直徑的圓恒過點.

綜上可知:在坐標平面上存在一個定點滿足條件. ……12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中, CC1⊥平面ABC, AC⊥BC, AB1的中點為D,B1C∩BC1=E. 求證:

(1)DE∥平面AA1C1C;

(2)AC⊥平面BCC1B1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C假設(shè)纜車勻速直線運動的速度為130m/min,山路AC長為1260m,經(jīng)測量,,

問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?

為使兩位游客在處互相等待的時間不超過分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點

求點的軌跡方程;

若直線與點的軌跡有兩個不同的交點,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知國家某5A級大型景區(qū)對擁擠等級與每日游客數(shù)量單位:百人的關(guān)系有如下規(guī)定:當時,擁擠等級為優(yōu);當時,擁擠等級為;當時,擁擠等級為擁擠;當時,擁擠等級為嚴重擁擠。該景區(qū)對6月份的游客數(shù)量作出如圖的統(tǒng)計數(shù)據(jù):

下面是根據(jù)統(tǒng)計數(shù)據(jù)得到的頻率分布表,求出的值,并估計該景區(qū)6月份游客人數(shù)的平均值同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表;

游客數(shù)量

單位:百人

天數(shù)

頻率

某人選擇在6月1日6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為優(yōu)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓短軸的左右兩個端點分別為A,B,直線與x軸、y軸分別交于兩點E,F(xiàn),交橢圓于兩點C,D.

(1)若,求直線的方程;

(2)設(shè)直線AD,CB的斜率分別為,若,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=si n-2cos2+1.

(1)f(x)的最小正周期;

(2)若函數(shù)y=f(x)y=g(x)的圖象關(guān)于直線x=1對稱,求當x,y=g(x)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:對于任意時,,

(1)若,求證:為等比數(shù)列;

(2)若

求數(shù)列的通項公式;

是否存在,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,點分別為線段的中點.

(1)求證:平面;

(2)若在邊上,,求證:.

查看答案和解析>>

同步練習(xí)冊答案