a+2i
i
=b+i(a,b∈R),其中為虛數(shù)單位,則a+b=( 。
A、1B、2C、3D、-1
考點(diǎn):復(fù)數(shù)相等的充要條件
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則及復(fù)數(shù)相等即可得出.
解答: 解:∵
a+2i
i
=
(a+2i)•(-i)
-i•i
=2-ai=b+i(a,b∈R),
∴b=2,-a=1,
∴a+b=1.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則及復(fù)數(shù)相等,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

lg25+lg4+(-9.8)0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非空集合A={x|
x-2
x-3
<0}
,B={x|(x-m)(x-m2-2)<0}.
(1)當(dāng)m=
1
2
時(shí),求A∩B;
(2)命題p:x∈A,命題q:x∈B,若?p是?q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S10<0,S11>0,則當(dāng)Sn最小時(shí)n的值是( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則
cos(π-α)
cos(α-
π
2
)
=( 。
A、-
1
2
B、-2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長(zhǎng)為2的正三角形.若AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.
(Ⅰ)求證:AE∥平面BCD;
(Ⅱ)求證:平面BDE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M,N為整合I的非空真子集,且M,N不相等,若N∩∁UM=φ,則M∪N是( 。
A、MB、NC、ID、φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-2x(x∈R)
(1)求函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時(shí),x2<ex;
(3)證明:對(duì)任意給定的正數(shù),總存在x0,使得當(dāng)x(x0,+∞)恒有x2<cex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2,g(x)=alnx(a≠0,a∈R).
(1)求f(x)的極值;
(2)若對(duì)任意x∈[1,+∞],使得f(x)+g(x)≥-x3+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對(duì)n∈N*,不等式
1
ln(n+1)
+
1
ln(n+2)
+…+
1
ln(n+2013)
2013
n(n+2013)
成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案