【題目】設函數(shù).
(1)求該函數(shù)的單調(diào)區(qū)間;
(2)若當x∈[﹣2,2]時,不等式f(x)<m恒成立,求實數(shù)m的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間為(﹣∞,﹣2),(0,+∞),單調(diào)減區(qū)間為(﹣2,0);
(2)m>2e2.
【解析】
(1)求出導函數(shù)f′(x),令導函數(shù)f′(x)>0,求解即可求得單調(diào)增區(qū)間,令f′(x)<0,求解即可求得單調(diào)減區(qū)間,從而求得答案;
(2)將恒成立問題轉(zhuǎn)化成求函數(shù)f(x)最大值,利用導數(shù)求出函數(shù)f(x)的最大值,即可求得實數(shù)m的取值范圍.
(1)∵,
∴f′(x)=xexx2exexx(x+2),
令f′(x)>0,解得x>0或x<﹣2,
令f′(x)<0,解得﹣2<x<0,
∴f(x)的單調(diào)遞增區(qū)間為(﹣∞,﹣2),(0,+∞),單調(diào)減區(qū)間為(﹣2,0);
(2)∵當x∈[﹣2,2]時,不等式f(x)<m恒成立,
∴m>f(x)max,
由(1)可知,f′(x)=xexx2exexx(x+2),
令f′(x)=0,可得x=﹣2或x=0,
∵f(﹣2),f(0)=0,f(2)=2e2,
∴f(x)max=2e2,
∴m>2e2,
∴實數(shù)m的取值范圍為m>2e2.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“若,則”的逆否命題為真命題
B. 命題“若,則”的否命題為“若,則”
C. 命題“,使得”的否定是“,都有”
D. 若,則“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)的30個零件編號為01,02,…,19,30,現(xiàn)利用如下隨機數(shù)表從中抽取5個進行檢測. 若從表中第1行第5列的數(shù)字開始,從左往右依次讀取數(shù)字,則抽取的第5個零件編號為( )
34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 86 |
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解高一年級學生的智力水平,某校按1:10的比例對700名高一學生按性別分別進行“智力評分”抽樣調(diào)查,測得“智力評分”的頻數(shù)分布表如表1、表2所示.
表1:男生“智力評分”頻數(shù)分布表
智力評分/分 |
| |||||
頻數(shù) | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生“智力評分”頻數(shù)分布表
智力評分/分 | ||||||
頻數(shù) | 1 | 7 | 12 | 6 | 3 | 1 |
(1)求高一年級的男生人數(shù),并完成下面男生“智力評分”的頻率分布直方圖;
(2)估計該校高一年級學生“智力評分”在內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解中學生對交通安全知識的掌握情況,從農(nóng)村中學和城鎮(zhèn)中學各選取100名同學進行交通安全知識競賽.下圖1和圖2分別是對農(nóng)村中學和城鎮(zhèn)中學參加競賽的學生成績按,,,分組,得到的頻率分布直方圖.
(Ⅰ)分別估算參加這次知識競賽的農(nóng)村中學和城鎮(zhèn)中學的平均成績;
(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認為“農(nóng)村中學和城鎮(zhèn)中學的學生對交通安全知識的掌握情況有顯著差異”?
成績小于60分人數(shù) | 成績不小于60分人數(shù) | 合計 | |
農(nóng)村中學 | |||
城鎮(zhèn)中學 | |||
合計 |
附:
臨界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個口袋內(nèi)有3個不同的紅球,4個不同的白球
(1)從中任取3個球,紅球的個數(shù)不比白球少的取法有多少種?
(2)若取一個紅球記2分,取一個白球記1分,從中任取4個球,使總分不少于6分的取法有多少種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(請寫出式子在寫計算結果)有4個不同的小球,4個不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):
(1)共有多少種方法?
(2)若每個盒子不空,共有多少種不同的方法?
(3)恰有一個盒子不放球,共有多少種放法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將邊長為正整數(shù)m、n的矩形劃分成若干邊長均為正整數(shù)的正方形,每個正方形的邊均平行于矩形的相應邊,試求這些正方形邊長之和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l的極坐標方程為θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲線C1的參數(shù)方程為(t為參數(shù)),圓C2的普通方程為x2+y2+2x=0.
(1)求C1,C2的極坐標方程;
(2)若l與C1交于點A,l與C2交于點B,當|AB|=2時,求△ABC2的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com