求函數(shù)f(x)=
1+ln(x+1)
x
的導(dǎo)函數(shù).
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:利用函數(shù)的求導(dǎo)法則求導(dǎo)即可.
解答: 解:f′(x)=(
1
x
+
ln(x+1)
x
)′=-
1
x2
+
1
x(x+1)
-
ln(x+1)
x2
點評:本題考查導(dǎo)數(shù)的運算,考查學(xué)生的運算能力,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司為其中公司成立十五周年,回饋政府的支持和幫助,決定于市中心新建一三角形綠地廣場,如圖,△ABC為一個等腰三角形性狀的綠地,腰CA的長為3(百米),底AB的長為4(百米),現(xiàn)決定在綠地內(nèi)筑一條筆直的小路EF(寬度不計),將該綠地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形的周長相等、面積分別為S1和S2
(1)若小路一端E為AC的中點,求此時小路的長度;
(2)求
S1
S2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點,點E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A,B兩點,
(1)若△ABE是銳角三角形,求該雙曲線的離心率e的取值范圍;
(2)若E(1,0),e=
3
,過圓O:x2+y2=2上任意一點作圓的切線l,若l交雙曲線于M,N兩點,試判斷:∠MON的大小是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:拋擲兩顆骰子,
(1)寫出所有的基本事件
(2)點數(shù)之和是5的倍數(shù)的概率;
(3)點數(shù)之和大于6小于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,x+y=1,則
x2
x+2
+
y2
y+1
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax+2,x∈[-3,3].當(dāng)a=-5時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角三角形ABC中,∠C=90°,AC=3,取點D,E使
BD
=2
DA
,
AB
=3
BE
,那么
CD
CA
+
CE
CA
=( 。
A、3B、6C、-3D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B(-2,-1),C(3,-6),點A在直線x-y+5=0上滑動,求△ABC的重心G的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)f(x)的解析式.
(1)已知f(
1-x
1+x
)=2x,求f(x);
(2)已知f(1-2x)=
1-x2
x2
,求f(x);
(3)已知f(x)+2f(
1
x
)=5x+9,求f(x);
(4)已知f(x)為二次函數(shù),且f(0)=2,f(x+1)-f(x)=x-1,求f(x).

查看答案和解析>>

同步練習(xí)冊答案