【題目】如圖,在四棱錐中,平面.底面是菱形,

(Ⅰ)求證:直線平面;

(Ⅱ)求直線與平面所成角的正切值;

(Ⅲ)已知在線段上,且,求二面角的余弦值.

【答案】I)見解析;(II;(III

【解析】

I)由菱形的性質(zhì),得ACBD;由PA⊥平面ABCD證出PABD,結(jié)合AC、PA是平面PAC內(nèi)的相交直線,可得BD⊥平面PAC;

II)過BBEAD于點(diǎn)E,連結(jié)PE.由PA⊥平面ABCDPABE,結(jié)合PAADA證出BE⊥平面PAD,可得∠BPE就是直線PB與平面PAD所成角.RtBPE中,利用三角函數(shù)的定義算出tanBPE,即得結(jié)果;

III)設(shè)FCM的中點(diǎn),連結(jié)BFDF,由等腰BMC與等腰DMC有公共的底面,證出∠BFD為二面角BMCD的平面角.然后在BFD中,利用余弦定理,算出cosBFD,即得結(jié)果.

I)∵底面ABCD是菱形,∴ACBD

PA⊥平面ABCD,BD平面ABCD,∴PABD

又∵AC、PA是平面PAC內(nèi)的相交直線,

∴直線BD⊥平面PAC

II)過BBEAD于點(diǎn)E,連結(jié)PE

PA⊥平面ABCD,BE平面ABCD,∴PABE

BEAD,PAADA

BE⊥平面PAD,可得∠BPE就是直線PB與平面PAD所成角

RtBPE中,BE,PE

tanBPE,即PB與平面PAD所成角的正切值等于

III)設(shè)FCM的中點(diǎn),連結(jié)BF、DF

∵△BMC中,BMBC,∴BFCM.同理可得DFCM

∴∠BFD就是二面角BMCD的平面角

BFD中,BD2,BFDF,

∴由余弦定理,得cosBFD

由此可得二面角BMCD的余弦值等于

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)購人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來越多的便捷移動支付方式受到了人們的青睞,更被網(wǎng)友們評為“新四大發(fā)明”之一.隨著人們消費(fèi)觀念的進(jìn)步,許多人喜歡用信用卡購物,考慮到這一點(diǎn),一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開發(fā)的新支付方式,簡單便捷,同時也滿足了部分網(wǎng)上消費(fèi)群體在支付寶余額不足時的“賒購”消費(fèi)需求.為了調(diào)查使用螞蟻花唄“賒購”消費(fèi)與消費(fèi)者年齡段的關(guān)系,某網(wǎng)站對其注冊用戶開展抽樣調(diào)查,在每個年齡段的注冊用戶中各隨機(jī)抽取100人,得到各年齡段使用螞蟻花唄“賒購”的人數(shù)百分比如圖所示.

1)由大數(shù)據(jù)可知,在1844歲之間使用花唄“賒購”的人數(shù)百分比y與年齡x成線性相關(guān)關(guān)系,利用統(tǒng)計(jì)圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點(diǎn)代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購”人數(shù)百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數(shù)字);

2)該網(wǎng)站年齡為20歲的注冊用戶共有2000人,試估算該網(wǎng)站20歲的注冊用戶中使用花唄“賒購”的人數(shù);

3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊用戶人數(shù)相同,現(xiàn)從1835歲之間使用花唄“賒購”的人群中按分層抽樣的方法隨機(jī)抽取8人,再從這8人中簡單隨機(jī)抽取2人調(diào)查他們每個月使用花唄消費(fèi)的額度,求抽取的兩人年齡都在1826歲的概率.

參考答案:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】丑橘是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的丑橘,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:

產(chǎn)地

批發(fā)價格

150

160

140

155

170

市場份額

市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.

1)從該地批發(fā)市場銷售的丑橘中隨機(jī)抽取一箱,估計(jì)該箱丑橘價格低于160元的概率;

2)按市場份額進(jìn)行分層抽樣,隨機(jī)抽取20箱丑橘進(jìn)行檢驗(yàn),①從產(chǎn)地共抽取箱,求的值;②從這箱中隨機(jī)抽取三箱進(jìn)行等級檢驗(yàn),隨機(jī)變量表示來自產(chǎn)地的箱數(shù),求的分布列和數(shù)學(xué)期望.

3)產(chǎn)地的丑橘明年將進(jìn)入該地市場,定價160/箱,并占有一定市場份額,原有五個產(chǎn)地的丑橘價格不變,所占市場份額之比不變(不考慮其他因素).設(shè)今年丑橘的平均批發(fā)價為每箱元,明年丑橘的平均批發(fā)價為每箱元,比較的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個命題:

:若,則此四棱錐的側(cè)面積為;

:若分別為的中點(diǎn),則平面;

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時間越長,回收價值越低,某二手電腦交易市場對2018年回收的折舊電腦交易前使用的時間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對時間使用的分組中,將使用時間落入各組的頻率視為概率.

(1)若在該市場隨機(jī)選取1個2018年成交的二手電腦,求其使用時間在上的概率;

(2)根據(jù)電腦交易市場往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值,其中(單位:年)表示折舊電腦的使用時間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價格.

由散點(diǎn)圖判斷,可采用作為該交易市場折舊電腦平均交易價格與使用年限的回歸方程,若,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測在區(qū)間(用時間組的區(qū)間中點(diǎn)值代表該組的值)上折舊電腦的價格.

5.5

8.5

1.9

301.4

79.75

385

附:參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,過原點(diǎn)作射線交橢圓于,平行四邊形的頂點(diǎn),在橢圓上.

1)若射線的斜率為,求直線的斜率;

2)求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定(試行)》規(guī)定:空氣質(zhì)量指數(shù)在區(qū)間、、、、、時,其對應(yīng)的空氣質(zhì)量狀況分別為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染.如圖為某市2019101日至107日的空氣質(zhì)量指數(shù)直方圖,在這7天內(nèi),下列結(jié)論正確的是( )

A.4的方差小于后3的方差

B.7天內(nèi)空氣質(zhì)量狀況為嚴(yán)重污染的天數(shù)為3

C.7天的平均空氣質(zhì)量狀況為良

D.空氣質(zhì)量狀況為優(yōu)或良的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作多少個?”現(xiàn)有這樣的一個正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

同步練習(xí)冊答案