9.用“二分法”求函數(shù)f(x)=x3-3x+1的一個(gè)零點(diǎn)時(shí),若區(qū)間[1,2]作為計(jì)算的初始區(qū)間,則下一個(gè)區(qū)間應(yīng)取為(1.5,2).

分析 函數(shù)f(x)=x3-2x-1,確定f(1),f(2),f(1.5)的符號(hào),根據(jù)零點(diǎn)存在定理,即可得到結(jié)論.

解答 解:由二分法由f(1)=1-3+1<0,f(2)=8-6+1>0,
取區(qū)間[1,2]作為計(jì)算的初始區(qū)間
取x1=1.5,
這時(shí)f(1.5)=1.53-3×1.5+1=-0.125<0,
故x0∈(1.5,2).
故答案為:(1.5,2).

點(diǎn)評(píng) 本題考查二分法,考查零點(diǎn)存在定理,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,分別過(guò)橢圓L的左頂點(diǎn)A(-3,0)和下頂點(diǎn)B且斜率為k(k>0)的兩條直線l1和l2分別交橢圓L于點(diǎn)C,D,且l1交y軸于點(diǎn)M,l2交x軸于點(diǎn)N,且線段CD與線段MN相交于點(diǎn)P.當(dāng)k=3時(shí),△ABM是直角三角形.
(Ⅰ)求橢圓L的標(biāo)準(zhǔn)方程;
(Ⅱ)(ⅰ)求證:存在實(shí)數(shù)λ,使得$\overrightarrow{AM}$=λ$\overrightarrow{OP}$;
(ⅱ)求|OP|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.6張同排連號(hào)的電影票,分給3名教師與3名學(xué)生,若要求師生相間而坐,則不同的分法有( 。
A.$A_3^3$•$A_4^3$B.$A_3^3$•$A_3^3$C.$A_4^3$•$A_4^3$D.2$A_3^3$•$A_3^3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.y=$\root{3}{x}$•$\sqrt{x}$的導(dǎo)數(shù)y′為( 。
A.$\frac{5}{6}$xB.$\frac{5}{6}\root{6}{x}$C.$\frac{5}{{6\root{6}{x}}}$D.$\frac{{5\root{6}{x}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知全集U={1,2,3,4,5,6,7,8,9},A={2,3,6,8},B={1,6,8}.
(Ⅰ)求A∪B;(∁UA)∩B;
(Ⅱ)寫(xiě)出集合A∩B的所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.復(fù)數(shù)$\frac{{\sqrt{2}•{i^{2015}}}}{{1-\sqrt{2}i}}$=(  )
A.$\frac{2}{3}$-$\frac{{\sqrt{2}}}{3}$iB.-$\frac{2}{3}$-$\frac{\sqrt{2}}{3}$iC.$\frac{2}{3}$+$\frac{\sqrt{2}}{3}$iD.-$\frac{2}{3}$+$\frac{\sqrt{2}}{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知圓C的方程:x2+y2-2x-4y+a=0,a∈R.
(1)求實(shí)數(shù)a的取值范圍;
(2)若直線m:x-y-1=0與圓C交于點(diǎn)P,Q兩點(diǎn)且|PQ|=2$\sqrt{2}$,求實(shí)數(shù)a的值;
(3)已知點(diǎn)O為坐標(biāo)原點(diǎn),平分圓C的面積的直線l分別與x,y軸的正半軸交于A,B兩點(diǎn),設(shè)使△AOB的面積為S的直線l恰有兩條,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若球的表面積為8π,則球的體積是$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若二項(xiàng)式(3x-$\frac{1}{\root{3}{x}}$)n的展開(kāi)式中各項(xiàng)系數(shù)之和為256.
(1)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開(kāi)式中的常數(shù)項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案