12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-2}-1,x≥0}\\{x+2,x<0}\end{array}\right.$,g(x)=x2-2x,則函數(shù)f[g(x)]的所有零點(diǎn)之和是(  )
A.2B.2$\sqrt{3}$C.1+$\sqrt{3}$D.0

分析 利用函數(shù)的解析式,化簡函數(shù)f[g(x)]的表達(dá)式,求出函數(shù)的零點(diǎn),即可求解.

解答 解:g(x)=x2-2x=(x-1)2-1,
當(dāng)g(x)≥0時(shí),即x(x-2)≥0,解得x≤0或x≥2,
當(dāng)g(x)<0時(shí),即x(x-2)<0,解得0<x<2,
∴當(dāng)x≤0或x≥2,f[g(x)]=${2}^{{x}^{2}-2x-2}-1$=0,即x2-2x-2=0,解得x=1+$\sqrt{3}$或x=1-$\sqrt{3}$,
當(dāng)0<x<2,f[g(x)]=x2-2x+2=0,此時(shí)方程無解,
∴函數(shù)f[g(x)]的所有零點(diǎn)之和是1+$\sqrt{3}$+1-$\sqrt{3}$=2,
故選:A

點(diǎn)評 本題主要考察了函數(shù)的零點(diǎn),函數(shù)的性質(zhì)及應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=(a2-3a+3)ax是指數(shù)函數(shù),則a的值為( 。
A.1B.3C.2D.1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“x<-1”是“x<-1或x>1”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列式子中,成立的是( 。
A.log0.44>log0.46B.1.013.4>1.013.5C.3.50.3<3.40.3D.log78<1og87

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=log3|x-1|的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{x^2}{2}$-$\frac{y^2}{3}$=1的焦點(diǎn)到其漸近線距離為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=loga$\frac{1+x}{1-x}$(a>0,且a≠1).
(1)證明f(x)為奇函數(shù);
(2)求使f(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f1(x)=(x2+2x+1)ex,f2(x)=[f1(x)]′,f3(x)=[f2(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*.設(shè)fn(x)=(anx2+bnx+cn)ex,則b2015=( 。
A.4034B.4032C.4030D.4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù),命題q:當(dāng)x∈[${\frac{1}{2}$,2]時(shí),函數(shù)f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果命題p與命題q中有且只有一個(gè)命題為真命題,試求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案