【題目】在四棱錐中,,,平面ABCD,E為PD的中點(diǎn),.
求四棱錐的體積V;
若F為PC的中點(diǎn),求證平面AEF;
求證平面PAB.
【答案】(1);(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】
利用直角三角形中的邊角關(guān)系求出BC、AC、CD,由求得底面的面積,代入體積公式進(jìn)行運(yùn)算.
證明,再由平面PAC證明,由,可得,從而得到平面AEF.
延長(zhǎng)DC,AB,設(shè)它們交于點(diǎn)N,證明EC是三角形DPN的中位線,可得,從而證明平面PAB.
在中,,,,.
在中,,,.
.
則.
證明:,F為PC的中點(diǎn),.
平面ABCD,,,,平面PAC,.
為PD中點(diǎn),F為PC中點(diǎn),,則,,平面AEF.
證明:延長(zhǎng)DC,AB,設(shè)它們交于點(diǎn)N,連,,
為ND的中點(diǎn)為PD中點(diǎn),平面PAB,平面PAB,
平面PAB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】種植于道路兩側(cè)、為車輛和行人遮陰并構(gòu)成街景的喬木稱為行道樹(shù)為確保行人、車輛和臨近道路附屬設(shè)施安全,樹(shù)木與原有電力線之間的距離不能超出安全距離按照北京市行道樹(shù)修剪規(guī)范要求,當(dāng)樹(shù)木與原有電力線發(fā)生矛盾時(shí),應(yīng)及時(shí)修剪樹(shù)枝行道樹(shù)修剪規(guī)范中規(guī)定,樹(shù)木與原有電力線的安全距離如表所示:樹(shù)木與電力線的安全距離表
電力線 | 安全距離單位: | |
水平距離 | 垂直距離 | |
| ||
| ||
| ||
| ||
330KV | ||
500KV |
現(xiàn)有某棵行道樹(shù)已經(jīng)自然生長(zhǎng)2年,高度為據(jù)研究,這種行道樹(shù)自然生長(zhǎng)的時(shí)間年與它的高度滿足關(guān)系式
1______;將結(jié)果直接填寫(xiě)在答題卡的相應(yīng)位置上
2如果這棵行道樹(shù)的正上方有35kV的電力線,該電力線距地面那么這棵行道樹(shù)自然生長(zhǎng)多少年必須修剪?
3假如這棵行道樹(shù)的正上方有500KV的電力線,這棵行道樹(shù)一直自然生長(zhǎng),始終不會(huì)影響電力線段安全,那么該電力線距離地面至少多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓的左頂點(diǎn)坐標(biāo)為,離心率為.
求橢圓E的方程;
過(guò)點(diǎn)作直線l交E于P、Q兩點(diǎn),試問(wèn):在x軸上是否存在一個(gè)定點(diǎn)M,使為定值?若存在,求出這個(gè)定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率是,點(diǎn)在橢圓上,A,B分別為橢圓的右頂點(diǎn)與上頂點(diǎn),過(guò)點(diǎn)A,B引橢圓C的兩條弦AE、BF交橢圓于點(diǎn)E,F.
求橢圓C的方程;
若直線AE,BF的斜率互為相反數(shù),
求出直線EF的斜率;
若O為直角坐標(biāo)原點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中錯(cuò)誤的序號(hào)是: _________
①已知恒成立,若為真命題,則實(shí)數(shù)的最大值為2;
②已知三點(diǎn)共線,則的最小值為11;
③已知是橢圓的為兩個(gè)焦點(diǎn),點(diǎn)在橢圓上,則使三角形為直角三角形的點(diǎn)個(gè)數(shù)4 個(gè);
④在圓內(nèi),過(guò)點(diǎn)有條弦的長(zhǎng)度成等差數(shù)列,最小弦長(zhǎng)為數(shù)列的首項(xiàng),最大弦長(zhǎng)為,若公差那么的取值集合為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有5人進(jìn)入到一列有7節(jié)車廂的地鐵中,分別求下列情況的概率用數(shù)字作最終答案:
恰好有5節(jié)車廂各有一人;
恰好有2節(jié)不相鄰的空車廂;
恰好有3節(jié)車廂有人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項(xiàng)和S10=100.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列 的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求適合下列條件的雙曲線的方程:
(1) 虛軸長(zhǎng)為12,離心率為;
(2) 焦點(diǎn)在x軸上,頂點(diǎn)間距離為6,漸近線方程為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com