【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,且是以為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于.問:是否存在過點(diǎn)的平面分別交,于點(diǎn),使得平面平面?若存在,求出的面積;若不存在,請(qǐng)說明理由.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析: (Ⅰ)取的中,連接 ,由三角形是等腰三角形,則 ,又 ,可得 ,從而證出 ,可得 ; (Ⅱ)取 中點(diǎn) ,連接 ,可證明四邊形為平行四邊形,進(jìn)一步證明 ,可得三角形是直角三角形,由三角形面積公式可得面積.
試題解析:(Ⅰ)證明:取的中點(diǎn),連接,
∵,
∴.
∵且,
∴是正三角形,且,
又∵,平面
∴平面,且平面
∴
(Ⅱ)解:存在,理由如下:
分別取的中點(diǎn),連接,則;
∵是梯形,且,
∴且,則四邊形為平行四邊形,
∴
又∵平面,平面
∴平面,平面且平面,
∴平面平面
∵側(cè)面,且平面平面
由(Ⅰ)知,平面,若四棱錐的體積等于,
則,所以
在和中,
∴,則
∴是直角三角形,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩擲骰子游戲,甲擲出的點(diǎn)數(shù)記為,乙擲出的點(diǎn)數(shù)記為,
若關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根時(shí)甲勝;方程有
兩個(gè)相等的實(shí)數(shù)根時(shí)為“和”;方程沒有實(shí)數(shù)根時(shí)乙勝.
(1)列出甲、乙兩人“和”的各種情形;
(2)求甲勝的概率.
必要時(shí)可使用此表格
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2014高考陜西版文第21題】設(shè)函數(shù).
(1)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求的最小值;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)若對(duì)任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
如圖5,已知點(diǎn)是圓心為半徑為1的半圓弧上從點(diǎn)數(shù)起的第一個(gè)三等分點(diǎn),是直徑,,平面,點(diǎn)是的中點(diǎn).
(1)求二面角的余弦值.
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2)若對(duì)于任意的, 恒成立,求的取值范圍;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓G:,過點(diǎn)A(0,5),B(﹣8,﹣3),C、D在該橢圓上,直線CD過原點(diǎn)O,且在線段AB的右下側(cè).
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.
下列命題:
①“囧函數(shù)”的值域?yàn)?/span>;
②“囧函數(shù)”在上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于軸對(duì)稱;
④“囧函數(shù)”有兩個(gè)零點(diǎn);
⑤“囧函數(shù)”的圖象與直線至少有一個(gè)交點(diǎn).其中正確命題的個(gè)數(shù)為( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域?yàn)?/span>,解不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com