【題目】如圖,一架飛機以600km/h的速度,沿方位角60°的航向從A地出發(fā)向B地飛行,飛行了36min后到達E地,飛機由于天氣原因按命令改飛C地,已知AD=600 km,CD=1200km,BC=500km,且∠ADC=30°,∠BCD=113°.問收到命令時飛機應該沿什么航向飛行,此時E地離C地的距離是多少?(參考數(shù)據(jù):tan37°=

【答案】解:連接AC,CE,在△ACD中由余弦定理,得:

∴AC=600,
則CD2=AD2+AC2 , 即△ACD是直角三角形,且∠ACD=60°,
又∠BCD=113°,則∠ACB=53°,
∵tan37°=
∴cos53°=sin37°=
在△ABC中,由余弦定理,得: ,則AB=500,
又BC=500,則△ABC是等腰三角形,且∠BAC=53°,
由已知有 ,
在△ACE中,由余弦定理,有 ,
又AC2=AE2+CE2 , 則∠AEC=90°.
由飛機出發(fā)時的方位角為600 , 則飛機由E地改飛C地的方位角為:90°+60°=150°.
答:收到命令時飛機應該沿方位角150°的航向飛行,E地離C地480km.

【解析】在△ACD中使用余弦定理得出AC及∠ACD,在△ABC中使用余弦定理得出AB及∠CAE,再在△ACE中使用余弦定理得出CE及∠AEC.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若m個不全相等的正數(shù)a1 , a2 , …am依次圍成一個圓圈使每個ak(1≤k≤m,k∈N)都是其左右相鄰兩個數(shù)平方的等比中項,則正整數(shù)m的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

在平面直角坐標系中曲線經伸縮變換后得到曲線,在以為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求曲線的參數(shù)方程和的直角坐標方程;

(2)設為曲線上的一點,又向曲線引切線,切點為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求證: 互相垂直;
(2)若k ﹣k 的長度相等,求β﹣α的值(k為非零的常數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班進行教學實驗,為了解教學效果,期中考試后,分別從兩個班級中各隨機抽取名學生的成績進行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班個樣本中,化學分數(shù)前十的平均分,并據(jù)此判斷哪種教學方式的教學效果更
佳;
(2)甲、乙兩班個樣本中,成績在分以下(不含分)的學生中任意選取人,求這人來自不同班級的概率;

(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為“成績優(yōu)良與教學方式有關”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

附:

獨立性檢驗臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點坐標分別是,并且經過.

(1)求橢圓的標準方程;

(2)過橢圓的右焦點作直線,直線與橢圓相交于兩點,當的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(文科)已知的橢圓的左、右兩個焦點分別為,上頂點, 是正三角形且周長為6.

(1)求橢圓的標準方程及離心率;

(2) 為坐標原點, 是直線上的一個動點,求的最小值,并求出此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,所對應的邊分別為,( )

A B3 C或3 D3或

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,動點, 分別在軸, 軸上運動, 為平面上一點, ,過點平行于軸交的延長線于點.

(Ⅰ)求點的軌跡曲線的方程;

(Ⅱ)過點作軸的垂線,平行于軸的兩條直線, 分別交曲線, 兩點(直線不過),交, 兩點.若線段中點的軌跡方程為,求的面積之比.

查看答案和解析>>

同步練習冊答案