【題目】已知函數(shù)
(1)若 ,求 在區(qū)間 上的最小值;
(2)若 在區(qū)間 上有最大值 ,求實數(shù) 的值

【答案】
(1)解:若 ,則
函數(shù)圖像開口向下,對稱軸為 ,所以函數(shù) 在區(qū)間 上是單調(diào)遞增的,在區(qū)間 上是單調(diào)遞減的,有又 ,

(2)解:對稱軸為
當(dāng) 時,函數(shù)在 在區(qū)間 上是單調(diào)遞減的,則
,即
當(dāng) 時,函數(shù) 在區(qū)間 上是單調(diào)遞增的,在區(qū)間 上是單調(diào)遞減的,則 ,解得 ,不符合;
當(dāng) 時,函數(shù) 在區(qū)間 上是單調(diào)遞增的,則
,解得
綜上所述,
【解析】本題主要考查函數(shù)的最值問題。(1)求函數(shù)在閉區(qū)間的最值問題,主要要研究函數(shù)的單調(diào)性,本題主要根據(jù)二次函數(shù)的圖像,判斷單調(diào)性進而求出最值。(2)根據(jù)最值求參數(shù),因為函數(shù)的對稱軸不確定,所以要對對稱軸進行討論,結(jié)合函數(shù)圖像,化靜為動的思想來求解。
【考點精析】利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知二次函數(shù)的圖象是一條拋物線,對稱軸方程為頂點坐標(biāo)是;當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3 (k+1)x2+3kx+1,其中k∈R.
(1)當(dāng)k=3時,求函數(shù)f(x)在[0,5]上的值域;
(2)若函數(shù)f(x)在[1,2]上的最小值為3,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R的函數(shù) 是偶函數(shù),且滿足 上的解析式為 ,過點 作斜率為k的直線l , 若直線l與函數(shù) 的圖象至少有4個公共點,則實數(shù)k的取值范圍是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是偶函數(shù).
(1)求 的值;
(2)若函數(shù) 沒有零點,求 得取值范圍;
(3)若函數(shù) 的最小值為0,求實數(shù) 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2是某等軸雙曲線的兩個焦點,P為該雙曲線上一點,若PF1⊥PF2 , 則以F1、F2為焦點且經(jīng)過點P的橢圓的離心率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用斜二測畫法畫出圖中水平放置的△OAB的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=x (m∈Z)為偶函數(shù),且在(0,+∞)上是增函數(shù),則f(2)的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDC,AEDC,M,N分別是AD,BE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過程中,一定存在某個位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知正方體ABCDA1B1C1D1的棱長為a,過點B1B1EBD1于點E,A、E兩點之間的距離.

查看答案和解析>>

同步練習(xí)冊答案