2.設(shè)函數(shù)f(x)=ax3+x2+bx+1在x=1和x=2處都有極值,求a,b,并求出此函數(shù)的極值.

分析 由f′(1)=0,f′(2)=0,解得$\left\{\begin{array}{l}{a=-\frac{2}{9}}\\{b=-\frac{4}{3}}\end{array}\right.$,由導(dǎo)數(shù)的符號確定極大、極小值即可.

解答 解:f′(x)=3ax2+2x+b,
∵函數(shù)f(x)=ax3+x2+bx+1在x=1和x=2處都有極值.
∴$\left\{\begin{array}{l}{f′(1)=3a+2+b=0}\\{f′(2)=12a+4+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{2}{9}}\\{b=-\frac{4}{3}}\end{array}\right.$,經(jīng)檢驗符合題意.
∴$f′(x)=-\frac{2}{3}{x}^{2}+2x-\frac{4}{3}$,
x∈(-∞,1),(2,+∞)時,f′(x)<0,x∈(1,2)時,f′(x)>0.
函數(shù)的增區(qū)間為(1,2)
∴函數(shù)有極小值f(1)=a+1+b+1=$\frac{4}{9}$.函數(shù)有極大值f(2)=8a+4+2b+1=$\frac{5}{9}$

點評 本題考查了利用導(dǎo)數(shù)求函數(shù)的極值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{2^x},x<2\\{log_3}({x^2}-1),x≥2\end{array}$,若f(a)=1,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,∠BAC=120°,AC=4,BC=2$\sqrt{7}$,則△ABC的面積為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.我國古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”題:發(fā)倉募糧,所募粒中秕不百三則收之(不超過3%),現(xiàn)抽樣取米一把,取得235粒米中夾秕n粒,若這批米合格,則n不超過(  )
A.6粒B.7粒C.8粒D.9粒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知四個函數(shù):①y=-x,②y=-$\frac{1}{x}$,③y=x3,④y=x${\;}^{\frac{1}{2}}$,從中任選2個,則事件“所選2個函數(shù)的圖象有且僅有一個公共點”的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.正四棱柱的體對角線長為6.面對角線長為3$\sqrt{3}$,則它的側(cè)面積是36$\sqrt{2}$或18$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)={x^3}-\frac{(3+a)}{2}{x^2}+ax$在(1,2)上不存在最值,則實數(shù)a的取值范圍為( 。
A.(1,2)B.(-∞,1]∪[2,+∞)C.(-∞,3]∪[6,+∞)D.(3,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)=x2+3x,若|x-a|≤1,則下列不等式一定成立的是( 。
A.|f(x)-f(a)|≤3|a|+3B.|f(x)-f(a)|≤2|a|+4C.|f(x)-f(a)|≤|a|+5D.|f(x)-f(a)|≤2(|a|+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)$y=2\sqrt{x+3}+5\sqrt{1-x}$的最大值為2$\sqrt{29}$.

查看答案和解析>>

同步練習(xí)冊答案