精英家教網 > 高中數學 > 題目詳情
已知函數
(I)若曲線y=f(x)在點(1,f(1))處的切線的傾斜角為,求實數a的值;
(II)若函數y=f(x)在區(qū)間[0,2]上單調遞增,求實數a的取值范圍.
【答案】分析:(I)根據切線的傾斜角為得到切線的斜率,根據導數的幾何意義可知x=1處的導數即為切線的斜率,建立等量關系,求出a即可;
(II)根據函數y=f(x)在區(qū)間[0,2]上單調遞增,可轉化成x2-2ax+4≥0對一切x∈[0,2]恒成立,將參數a分離,轉化成當x∈(0,2]時,等價于不等式恒成立,利用均值不等式求出不等式右邊函數的最小值,即可求出a的范圍.
解答:解:(Ⅰ)∵
∴f'(x)=x2-2ax+4(2分)
(4分)
∴a=2(6分)
(Ⅱ)∵函數y=f(x)在區(qū)間[0,2]上單調遞增
∴x2-2ax+4≥0對一切x∈[0,2]恒成立
x=0時成立
當x∈(0,2]時,等價于不等式恒成立

時取到等號,所以g(x)min=2
∴a≤2(12分)
點評:本題主要考查了利用導數研究曲線上某點切線方程,以及函數恒成立問題等基礎題知識,考查運算求解能力、推理論證能力,分類討論思想、化歸與轉化思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數數學公式
(I)若曲線y=f(x)在點(1,f(1))處的切線的傾斜角為數學公式,求實數a的值;
(II)若函數y=f(x)在區(qū)間[0,2]上單調遞增,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年北京市海淀區(qū)北師特學校高三(上)第四次月考數學試卷(文科)(解析版) 題型:解答題

已知函數
(I)若曲線y=f(x)在點(1,f(1))處的切線與直線x+2y=0垂直,求a的值;
(II)求函數f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省濟寧市汶上一中高三(上)11月月考數學試卷(理科)(解析版) 題型:解答題

已知函數
(I)若曲線y=f(x)在點(1,f(1))處的切線的傾斜角為,求實數a的值;
(II)若函數y=f(x)在區(qū)間[0,2]上單調遞增,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年浙江省杭州高級中學高二(上)期末數學試卷(文科)(解析版) 題型:解答題

已知函數
(I)若曲線y=f(x)在點(1,f(1))處的切線的傾斜角為,求實數a的值;
(II)若函數y=f(x)在區(qū)間[0,2]上單調遞增,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案