16.由于春運(yùn)的到來(lái),南昌火車(chē)站為舒緩候車(chē)室人流的壓力,決定在候車(chē)大樓外建立臨時(shí)候車(chē)區(qū),其中K288次列車(chē)候車(chē)區(qū)是一個(gè)總面積為50m2的矩形區(qū)域(如圖所示),矩形場(chǎng)地的一面利用候車(chē)廳大樓外墻(長(zhǎng)度為12m),其余三面用鐵欄桿圍,并留一個(gè)長(zhǎng)度為2m的入口.現(xiàn)已知鐵欄桿的租用費(fèi)用為80元/m.設(shè)該矩形區(qū)域的長(zhǎng)為x (單位:m),租用鐵欄桿的總費(fèi)用為y(單位:元)
(1)將y表示為x的函數(shù),并求出租用此區(qū)域所用鐵欄桿所需費(fèi)用最小值及相應(yīng)的x;
(2)若所需總費(fèi)用不超過(guò)2160元,則x的取值范圍是多少?

分析 (1)由題意得矩形的長(zhǎng)為x-2,寬為$\frac{50}{x}$,鐵欄桿的租用費(fèi)用為80元/m,由此得出y關(guān)于x的表達(dá)式,將其化簡(jiǎn)后,利用基本不等式求出費(fèi)用最小值,并求出不等式等號(hào)成立時(shí)x的值;
(2)由y≤2160,運(yùn)用二次不等式的解法,化簡(jiǎn)整理,即可得到x的范圍.

解答 解:(1)該矩形區(qū)域的長(zhǎng)為xm,寬為$\frac{50}{x}$m,
依題意有y=80($\frac{50}{x}$•2+x-2),其中2<x≤12,
由均值不等式可得:$y=80(\frac{100}{x}+x-2)≥80(2\sqrt{100}-2)=1440$,
當(dāng)且僅當(dāng)$\frac{100}{x}=x$即x=10時(shí)取“=”號(hào).
綜上:當(dāng)x=10m時(shí),租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,最小費(fèi)用為1440元.
(2)由題意可得$y=80(\frac{100}{x}+x-2)≤2160$,
∴$\frac{100}{x}+x-2≤27$,
∴x2-29x+100≤0,
∴(x-25)(x-4)≤0,
∴4≤x≤25,
又∵x≤12
∴4≤x≤12.

點(diǎn)評(píng) 本題考查了基本不等式在最值問(wèn)題中的應(yīng)用,注意等號(hào)成立的條件,認(rèn)真審題并列出函數(shù)的解析式是解題的關(guān)鍵,考查了運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)盒子里裝有6張卡片,上面分別寫(xiě)著如下6個(gè)定義域?yàn)镽的函數(shù):f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.現(xiàn)從盒子中逐一抽取卡片,且每次取出后不放回,若取到一張記有偶函數(shù)的卡片,則停止抽取,否則繼續(xù)進(jìn)行,則抽取次數(shù)ξ的數(shù)學(xué)期望為( 。
A.$\frac{7}{4}$B.$\frac{77}{20}$C.$\frac{3}{4}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)左焦點(diǎn)F1(-2,0)作x軸的垂線交橢圓于P,Q兩點(diǎn),PF2與y軸交于E(0,$\frac{3}{2}$),A,B是橢圓上位于PQ兩側(cè)的動(dòng)點(diǎn).
(Ⅰ)求橢圓的離心率e和標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)∠APQ=∠BPQ時(shí),直線AB的斜率KAB是否為定值,若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.過(guò)(1,1),(2,-1)兩點(diǎn)的直線方程為( 。
A.2x-y-1=0B.x-2y+3=0C.2x+y-3=0D.x+2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中,既是奇函數(shù)又以π為周期,且在(0,$\frac{π}{2}$)上單調(diào)遞增的是( 。
A.y=|tan$\frac{x}{2}$|B.y=sinxC.y=tanxD.cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直線x-$\sqrt{3}$y+3=0的傾斜角為( 。
A.150°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.當(dāng)直線(sin2α)x+(2cos2α)y-1=0($\frac{π}{2}$<α<π)與兩坐標(biāo)軸圍成的三角形面積最小時(shí),α等于(  )
A.$\frac{π}{4}$B.$\frac{5π}{6}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}滿足bn=an+n+4,若b1,b3,b6成等比數(shù)列,且b2=a8
(1)求an,bn;
(2)求數(shù)列{$\frac{1}{{a}_{n}•_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖(1),在等腰梯形ABCD中,AB∥CD,E,F(xiàn)分別為AB和CD的中點(diǎn),且AB=EF=2,CD=4,M為CE中點(diǎn),現(xiàn)將梯形ABCD沿EF所在直線折起,使平面EFCB⊥平面EFDA,如圖(2)所示,N是CD的中點(diǎn).

(Ⅰ)證明:MN∥平面ADFE;
(Ⅱ)求二面角M-NA-F的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案