(2014•潮州二模)AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為 .

 

 

【解析】

試題分析:在圓中線段利用由切割線定理證得∠ACD=∠ABC,進而利用直角三角形相似的判定得到三角形相似,得比例式求得AC即可.

【解析】
連接AC、BC,

則∠ACD=∠ABC,

又因為∠ADC=∠ACB=90°,

所以△ACD~△ACB,

所以,

解得AC=

故填:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:[同步]2015年人教A版必修二4.3 空間直角坐標系練習卷(解析版) 題型:

求證:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)為頂點的三角形是等腰直角三角形.

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2015人教A版必修二2.1空間點、直線、平面間位置關(guān)系練習卷(解析版) 題型:

在三棱柱ABC﹣A1B1C1中,各棱長相等,側(cè)棱垂直于底面,點D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是( )

A.30° B.45° C.60° D.90°

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:填空題

矩陣A=的一個特征值為λ,是A的屬于特征值λ的一個特征向量,則A﹣1= .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(解析版) 題型:填空題

(2014•咸陽一模)(選修4﹣1 幾何證明選講)如圖,兩個等圓⊙O與⊙O′外切,過O作⊙O′的兩條切線OA,OB,A,B是切點,點C在圓O′上且不與點A,B重合,則∠ACB= .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(解析版) 題型:選擇題

如圖,PA是⊙O的切線,A為切點,PC是⊙O的割線,且PB=BC,則等于( )

A.2 B. C.1 D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(解析版) 題型:選擇題

如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC為直徑的圓交AB于D,則AD的長為( )

A. B. C. D.4

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質(zhì)與判定定理(解析版) 題型:填空題

(2013•湖南)如圖,在半徑為的⊙O中,弦AB,CD相交于點P,PA=PB=2,PD=1,則圓心O到弦CD的距離為 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年蘇教版選修1-2 3.2復(fù)數(shù)的四則運算練習卷(解析版) 題型:選擇題

設(shè)a∈R,且(a+i)2i為正實數(shù),則a=( )

A.2 B.1 C.0 D.﹣1

 

查看答案和解析>>

同步練習冊答案