在直三棱柱中,,異面直線(xiàn)所成的角等于,設(shè)

(1)求的值;
(2)求平面與平面所成的銳二面角的大。

(1); (2).

解析試題分析:由于是直三棱柱,且底面是直角三角形,便于建立空間直角坐標(biāo)系.
建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用向量的夾角公式列方程,求出的值.
在(1)的基礎(chǔ)上,確定的坐標(biāo),設(shè)出平面的法向量與平面的法向量,
根據(jù)向量垂直的條件求出法向量,最后用向量的夾角公式求出,這就是所求銳二面角的余弦值.
試題解析:(1)建立如圖所示的空間直角坐標(biāo)系,則,,)                                  1分

, ∴       3分
∵異面直線(xiàn)所成的角
 即               5分
,所以                                    6分
(2)設(shè)平面的一個(gè)法向量為,則
,,即
,
,不妨取                          8分
同理得平面的一個(gè)法向量                10分
設(shè)的夾角為,則      12分
                                           13分
∴平面與平面所成的銳二面角的大小為    14分
考點(diǎn):1、空間直角坐標(biāo)系;2、空間向量夾角公式的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱ABC­A1B1C1中,底面△ABC是等邊三角形,DAB中點(diǎn).
 
(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是矩形,且CDDA1,求證:三棱柱ABC­A1B1C1是正三棱柱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,底面為直角梯形,, 平面,且,的中點(diǎn)

(1) 證明:面
(2) 求面與面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,是邊長(zhǎng)為2的正三角形,若平面,平面平面,,且

(Ⅰ)求證://平面;
(Ⅱ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在幾何體中,點(diǎn)在平面ABC內(nèi)的正投影分別為A,B,C,且,E為中點(diǎn),

(1)求證;CE∥平面,
(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,,,側(cè)面為等邊三角形

(1)證明:
(2)求AB與平面SBC所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,平面,底面為直角梯形,,,

(1)求證:⊥平面;
(2)求異面直線(xiàn)所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在正三棱柱中,分別為,的中點(diǎn).

(1)求證:平面
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正三棱柱ABC-A'B'C'中,D是BC的中點(diǎn),AA'=AB=2.

(1)求證:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案