在三棱錐P-ABC中,PA⊥底面ABC,∠APC=∠BPA=30°,∠BAC=120°,PA=3,則三棱錐P-ABC的體積為( 。
A、21π
B、12π
C、
7
21
π
2
D、
3
3
4
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:畫出圖形,利用已知條件求出AB,然后求解三棱錐的體積.
解答: 解:三棱錐P-ABC中,PA⊥底面ABC,∠APC=∠BPA=30°,∠BAC=120°,PA=3,
三角形PAB是直角三角形,AB=PAtan30°=3×
3
3
=
3
,
三角形PAC是直角三角形,AC=PAtan30°=3×
3
3
=
3
,
三棱錐的底面△ABC的面積為:
1
2
AB•AC•sin120°
=
1
2
×
3
×
3
×
3
2
=
3
3
4
.三棱錐的高為PA=3,
則三棱錐P-ABC的體積為:
1
3
×
3
3
4
×3
=
3
3
4

故選:D
點評:本題是基礎(chǔ)題,考查三棱錐的體積的計算,注意三棱錐的特征是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程組
x-y+1=0
2x+y-4=0
的解集可表示為:(1)(1,2);(2){(1,2)};(3){(x,y)|x=1,y=2};(4)
x=1
y=2
;(5){(x,y)|
x=1
y=2
},其中正確的個數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
,
b
滿足|
a
|=|
b
|=|
a
+
b
|=1,則
a
b
的值為
 
a
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,側(cè)面PAD為等邊三角形,底面ABCD為棱形且∠DAB=
π
3

(Ⅰ)求證:PB⊥AD;
(Ⅱ)求平面PAB與平面PCD所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(x,4),
b
=(-1,2),若
a
b
的夾角為銳角,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,M、N是焦點為F的拋物線y2=2px(p>0)上兩個不同的點,且線段MN中點A的橫坐標(biāo)為4-
p
2

(1)求|MF|+|NF|的值;
(2)若p=2,直線MN與x軸交于點B點,求點B橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
均為單位向量,它們的夾角為600,實數(shù)x,y滿足|x
a
+y
b
|=
3
,那么x+2y的最大值為( 。
A、3
B、
3
C、2
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1在Rt△ABC中,∠ABC=90°,D、E分別為線段AB、AC的中點,AB=4,BC=
2
,以D為折痕,將Rt△ADE折起到圖2的位置,使平面A′DE⊥平面DBCE,連接A′C′,A′B′,設(shè)F是線段A′C上的動點,滿足
CF
=λ
CA′

(1)證明:平面FBE⊥平面A′DC;
(2)若二面角F-BE-C的大小為45°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AB
=(14,0),
AC
=(
2
,
2
),則
AB
AC
的夾角的大小為
 

查看答案和解析>>

同步練習(xí)冊答案