19.已知a>0,b>0,且ab=1,則函數(shù)f(x)=ax與函數(shù)g(x)=-logbx的圖象可能是( 。
A.B.C.D.

分析 根據(jù)對數(shù)的運算性質(zhì),我們易根據(jù)ab=1,進而化簡函數(shù)g(x)的解析式,然后根據(jù)反函數(shù)的定義,判斷出函數(shù)f(x)與g(x)的關(guān)系,然后對題目中的四個答案逐一進行比照,即可得到答案.

解答 解:∵ab=1
g(x)=-logbx=logax
則函數(shù)f(x)=ax(a>0且a≠1)與g(x)=-logbx(b>0且b≠1)互為反函數(shù)
故函數(shù)f(x)=ax(a>0且a≠1)與g(x)=-logbx(b>0且b≠1)的圖象關(guān)于直線y=x對稱
故選B.

點評 本題考查的知識點是對數(shù)函數(shù)的圖象與性質(zhì),指數(shù)函數(shù)的圖象與性質(zhì),反函數(shù)的圖象,其中利用對數(shù)運算性質(zhì),及反函數(shù)的定義,分析出函數(shù)f(x)與g(x)的關(guān)系,是解答本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.關(guān)于直線l,m及平面α,β,下列命題中正確的是(  )
A.若l∥α,α∩β=m,則l∥mB.若l∥α,m∥α,則l∥m
C.若l⊥α,m∥α,則l⊥mD.若l∥α,m⊥l,則m⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.正方體ABCD-A'B'C'D'的棱長為a,連接A'C',A'D,A'B,BD,BC',C'D,得到一個三棱錐A'-BC'D.求:
(1)求異面直線A'D與C'D′所成的角;
(2)三棱錐A'-BC'D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知F1,F(xiàn)2分別是橢圓的左、右焦點,現(xiàn)以F2為圓心作一個圓恰好經(jīng)過橢圓中心并且交橢圓于點M、N,若過F1的直線MF1是圓F2的切線,則橢圓的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.空間四邊形ABCD中,E、F分別為AC、BD中點,若CD=2AB,EF⊥AB,則直線EF與CD所成的角的度數(shù)為30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,圓C的方程為ρ=6sinθ.
( I)求直角坐標下圓C的標準方程;
(Ⅱ)若點P(l,2),設(shè)圓C與直線l交于點A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)當a=-$\frac{10}{3}$時,討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)僅在x=0處有極值,求a的取值范圍;
(3)若對于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.不論k為任何實數(shù),直線(k+1)x-(k+2)y+k-3=0恒過定點(-5,-4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2log4(1+x)-log4(1+ax2)在定義域(-1,1)內(nèi)是奇函數(shù),其中a是常數(shù).
(1)求a的值;
(2)求使不等式f(-x)≤f(x)-1成立的實數(shù)x的取值范圍.

查看答案和解析>>

同步練習冊答案