【題目】某人有樓房一幢,室內(nèi)總面積為,擬分割成兩類房間作為旅游客房,有關(guān)的數(shù)據(jù)如下表:

大房間

小房間

每間的面積

每間裝修費

6000

每天每間住人數(shù)

5

3

每天每人住宿費

80

100

如果他只能籌款80000元用于裝修,且游客能住滿客房,他應(yīng)隔出大房間和小房間各多少間,能獲得的住宿總收入最多?每天獲得的住宿總收入最多是多少?

【答案】大房間0間,小房間12間,或大房間3間,小房間8間時,每天收入最多,為3600.

【解析】

設(shè)隔出大房間間,小房間間,收益為,寫出滿足的約束條件及目標(biāo)函數(shù),作出可行域,找到最優(yōu)解的整點,再求出的最大值.

設(shè)隔出大房間間,小房間間,收益為,則

目標(biāo)函數(shù),作出可行域如圖所示,

當(dāng)直線經(jīng)過可行域的點時,取最大值;

解方程組得點,由于點的坐標(biāo)不是整數(shù),而最優(yōu)最是整點,所以不是最優(yōu)解;

經(jīng)驗證;經(jīng)過可行域內(nèi)的整點,且使取得最大值的整點是,此時

所以大房間0間,小房間12間,或大房間3間,小房間8間時,每天收入最多為3600.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中錯誤的是(

A.2m3”是方程表示橢圓的必要不充分條件

B.命題p:,使得的否定

C.命題,則方程有實根的逆否命題是真命題

D.命題,則的否命題是,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,圓上有一點,且點,的極坐標(biāo)分別為,.

(1)求圓的直角坐標(biāo)方程及直線的普通方程;

(2)設(shè)直線與坐標(biāo)軸的兩個交點分別為,,點在圓上運動,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下4個命題:

1)三個點可以確定一個平面;

2)平行于同一個平面的兩條直線平行;

3)拋物線對稱軸為軸;

4)同時垂直于一條直線的兩條直線一定平行;

正確的命題個數(shù)為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,錯誤的是(

A.圓錐所有的軸截面是全等的等腰三角形

B.圓柱的軸截面是過母線的截面中面積最大的一個

C.圓錐的軸截面是所有過頂點的界面中面積最大的一個

D.當(dāng)球心到平面的距離小于球面半徑時,球面與平面的交線總是一個圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求橢圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)若點的極坐標(biāo)為,直線與橢圓相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上動點與定點的距離和它到定直線的距離的比是常數(shù),若過的動直線與曲線相交于兩點

(1)說明曲線的形狀,并寫出其標(biāo)準(zhǔn)方程;

(2)是否存在與點不同的定點,使得恒成立?若存在,求出點的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定數(shù)列,對,該數(shù)列前項的最大值記為,后的最小值記為,.

(1)設(shè)數(shù)列為3,4,7,5,2,寫出,,的值;

(2)設(shè),公比的等比數(shù)列,證明:成等比數(shù)列;

(3)設(shè),證明:的充分必要條件為是公差為的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,兩點分別在上,且使,. 現(xiàn)將沿折起,使平面平面,得到四棱錐 (如圖2

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案