【題目】已知集合U=R,集合A={x|x2-(a-2)x-2a≥0},B={x|1≤x≤2}.

(1)當(dāng)a=1時(shí),求A∩B;

(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

【答案】(1){x|1≤x≤2}; (2){a|a≤1}.

【解析】

(1)代入a的值,求出集合A,從而求出AB

(2)由AB的并集為A,得到BA的子集,表示出A的中不等式的解集,根據(jù)數(shù)軸確定出滿足題意a的范圍即可.

(1)a=1時(shí),A={x|x≥1或x≤-2},

故A∩B={x|1≤x≤2};

(2)∵A∪B=A,

∴BA,

由x2-(a-2)x-2a≥0,得(x+2)(x-a)≥0,

當(dāng)a<-2時(shí),如數(shù)軸表示,符合題意;

同理,當(dāng)-2≤a≤1,也合題意;

但當(dāng)a>1時(shí),不合題意,

綜上可知{a|a≤1}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)若為增函數(shù),試求實(shí)數(shù)的取值范圍.

)當(dāng),若存在,使成立,試確定實(shí)數(shù)的取值范圍.

)設(shè)函數(shù),求證:

i

ii,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下判斷正確的是(
A.函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件
B.命題“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1>0”
C.命題“在銳角△ABC中,有 sinA>cosB”為真命題
D.“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|2n﹣5|an , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2 , 且橢圓E過(guò)點(diǎn)(0, ),( ,﹣ ),點(diǎn)A是橢圓上位于第一象限的一點(diǎn),且△AF1F2的面積S =
(1)求點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)B(3,0)的直線l與橢圓E相交于點(diǎn)P、Q,直線AP、AQ分別與x軸相交于點(diǎn)M、N,點(diǎn)C( ,0),證明:|CM||CN|為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是實(shí)數(shù),

1)若函數(shù)為奇函數(shù),求的值;

2)試用定義證明:對(duì)于任意,上為單調(diào)遞增函數(shù);

3)若函數(shù)為奇函數(shù),且不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線L: (T為參數(shù))與曲線C: (φ為參數(shù))相交于不同的兩點(diǎn)A,B.
(1)若α= ,若以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,求直線AB的極坐標(biāo)方程;
(2)若直線的斜率為 ,點(diǎn)P(2, ),求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解初三學(xué)生女生身高情況,某中學(xué)對(duì)初三女生身高進(jìn)行了一次測(cè)量,所得數(shù)據(jù)整理后列出了頻率分布表如下:

組 別

頻數(shù)

頻率

[145.5,149.5)

1

0.02

[149.5,153.5)

4

0.08

[153.5,157.5)

20

0.40

[157.5,161.5)

15

0.30

[161.5,165.5)

8

0.16

[165.5,169.5)

m

n

合 計(jì)

M

N

(1)求出表中所表示的數(shù);

(2)畫(huà)出頻率分布直方圖;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式ax2-(2a+3)x+6>0(aR).

查看答案和解析>>

同步練習(xí)冊(cè)答案