分析 (1)由已知可得斜率函數(shù)為f′(x)=3x2-3,進而求出所過點切線的斜率,代入點斜式公式即可.
(2)設切點為(x0,y0),求出切點坐標,即可求曲線過點P處的切線方程.
解答 解:(1)∵y=f(x)=x3-3x,
∴y′=f′(x)=3x2-3.
則在P(1,-2)處直線的斜率k1=f′(1)=0,
∴所求直線的方程為y=-2.
(2)設切點坐標為(x0,x03-3x0),
則直線l的斜率k2=f′(x0)=3x02-3,
∴-2-(x03-3x0)=(3x02-3)(1-x0),
∴x03-3x0+2=(3x02-3)(x0-1),
解得x0=1或x0=-$\frac{1}{2}$.
x0=1,所求直線的方程為y=-2
x0=-$\frac{1}{2}$,所求直線斜率k=3x02-3=-$\frac{9}{4}$,
于是所求直線的方程為y-(-2)=-$\frac{9}{4}$(x-1),即y=-$\frac{9}{4}$x+$\frac{1}{4}$.
綜上所述,所求直線的方程為y=-2或y=-$\frac{9}{4}$x+$\frac{1}{4}$.
點評 本題主要考查函數(shù)切線方程的求解,根據(jù)導數(shù)的幾何意義,求出切線斜率和方程是解決本題的關鍵.注意區(qū)分在點P處與過點P處的切線方程.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | log23 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | ($\frac{\sqrt{3}}{3}$,1) | C. | (0,$\frac{\sqrt{3}}{3}$) | D. | ($\frac{\sqrt{2}}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com