精英家教網 > 高中數學 > 題目詳情

已知F1(-3,0),F2(3,0)分別是橢圓的左、右焦點,P是該橢圓上的點,滿足PF2⊥F1F2,∠F1PF2的平分線交F1F2于M(1,0),求橢圓方程.

解:由題意可知,P(3,),∵|PF1|:|PF2|=|F1M|:|F2M|,
,∴b4=12a2,∴(a2-9)2=12a2,
解得a2=27或a2=3(舍去),∴b2=27-9=18.
∴橢圓方程是
分析:根據題意可知,P(3,),則|PF1|:|PF2|=|F1M|:|F2M|,可得,由此可以求出橢圓方程.
點評:本題考查橢圓的基本性質及其應用,解題時要能夠靈活地運用恰當的公式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知F1(-3,0)、F2(3,0)是橢圓
x2
m
+
y2
n
=1的兩個焦點,P是橢圓上的點,當∠F1PF2=
3
時,△F1PF2的面積最大,則有( 。
A、m=12,n=3
B、m=24,n=6
C、m=6,n=
3
2
D、m=12,n=6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1(-3,0),F2(3,0)分別是橢圓的左、右焦點,P是該橢圓上的點,滿足PF2⊥F1F2,∠F1PF2的平分線交F1F2于M(1,0),求橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1(-3,0)、F2(3,0)是橢圓+=1的兩個焦點,P是橢圓上的點,當∠F1PF2=時,△F1PF2的面積最大,則有(    )

A.m=12,n=3          B.m=24,n=6          C.m=6,n=          D.m=12,n=6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1(-3,0),F2(3,0)是橢圓=1的兩個焦點,P是橢圓上的點,當∠F1PF2=時,△F1PF2的面積最大,則有(    )

A.m=12,n=3                                  B.m=24,n=6

C.m=6,n=                                    D.m=12,n=6

查看答案和解析>>

科目:高中數學 來源:2011年高三數學復習(第8章 圓錐曲線):8.9 解幾何最值問題(解析版) 題型:選擇題

已知F1(-3,0)、F2(3,0)是橢圓+=1的兩個焦點,P是橢圓上的點,當∠F1PF2=時,△F1PF2的面積最大,則有( )
A.m=12,n=3
B.m=24,n=6
C.m=6,n=
D.m=12,n=6

查看答案和解析>>

同步練習冊答案