3.已知關(guān)于x的不等式x2-2x-3>0和x2+bx+c≤0的解集分別為A,B,若A∪B=R,A∩B=(3,4],則b+c=( 。
A.7B.-7C.12D.-12

分析 由二次不等式的解法,可得集合A,再由A∪B=R,A∩B=(3,4],[-1,4]=B,由韋達(dá)定理即可得到系數(shù)b,c,進(jìn)而得到所求和.

解答 解:x2-2x-3>0,解得x>3或x<-1,
即A=(3,+∞)∪(-∞,-1),
A∪B=R,A∩B=(3,4],
則[-1,3]⊆B,(3,4]⊆B,
即有[-1,4]=B,
即-1,4為x2+bx+c=0的兩根,
可得-1+4=-b,-1×4=c,
解得b=-3,c=-4,
b+c=-7.
故選:B.

點(diǎn)評(píng) 本題考查集合的運(yùn)算,主要是交集、并集的運(yùn)算,同時(shí)考查二次不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對(duì)于實(shí)數(shù)a和b,定義運(yùn)算“?”:a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$,設(shè)函數(shù)f(x)=(x+2)?(3-x),x∈R,若方程f(x)=c恰有兩個(gè)不同的解,則實(shí)數(shù)c的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對(duì)任意的a∈[-1,1],f(x)=x2+(a-4)x+4-2a的值恒大于0,則x的取值范圍是( 。
A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,1)∪(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,a1=3,an+1=2an-1.
(1)假設(shè)bn=an-1,求{bn}的通項(xiàng)公式和前n項(xiàng)和Sn;
(2)設(shè)${c_n}=\frac{{{2^{n+1}}}}{{{a_n}{a_{n+1}}}}$,求{cn}的前n項(xiàng)和Tn的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,Sn=an+1+n,則其通項(xiàng)公式為${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{1-{2}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,設(shè)$\frac{a}{c}$=$\sqrt{3$-1,$\frac{tanB}{tanC}$=$\frac{2a-c}{c}$,求角A,B,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x≥1}\\{(4-\frac{a}{2})x+2,x<1}\end{array}\right.$是R上的單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.[1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列四個(gè)關(guān)系式中,正確的是( 。
A.∅∈{a}B.a∉{a,b}C.b⊆{a,b}D.{a}⊆{a,b}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3..已知二次函數(shù)f(x)滿足f(x+2)=f(2-x),且f(x)=0的兩根積為3,f(x)的圖象過(0,3),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案