在△ABC中,已知tanB=
cos(C-B)sinA+sin(C-B)
,試判斷△ABC的形狀.
分析:切和弦共同存在的等式中,一般要切化弦,根據(jù)兩外項之積等于兩內(nèi)項之積,把分式化為整式,移項,逆用兩角和的余弦公式,把腳C化為A+B用兩角和的余弦公式展開,合并同類項,得到兩角余弦乘積為零,則兩角中必有一個直角.
解答:解:由已知得:
sinB
cosB
=
cos(C-B)
sinA+sin(C-B)
,
∴sinAsinB+sinBsin(C-B)=cosBcos(C-B),
移項,逆用兩角和的余弦公式得:
sinAsinB=cosC,
∵在△ABC中,cosC=-cos(A+B),
∴sinAsinB=-cos(A+B),
∴cosAcosB=0,γ
∴cosA=0或 cosB=0,
∴△ABC是直角三角形.
點評:和三角形有關(guān)的三角恒等變形,要求能用所有的公式特別是余弦的和差角公式 進(jìn)行簡單的三角函數(shù)式的化簡、求值及恒等式的證明
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知B(-3,0),C(3,0),D為線段BC上一點,
AD
BC
=0
,H是△ABC的垂心,且
AH
=3
HD

(Ⅰ)求點H的軌跡M的方程;
(Ⅱ)若過C點且斜率為-
1
2
的直線與軌跡M交于點P,點Q(t,0)是x軸上任意一點,求當(dāng)△CPQ為銳角三角形時t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南通高考密卷·數(shù)學(xué)(理) 題型:013

在△ABC中,已知三邊a,b,c成等差數(shù)列,且有sinB+cosB=t,則t的取值范圍是

[  ]

A.(0,)
B.(1,)
C.(0,1)
D.(,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上杭一中、武平一中、長汀一中、漳平一中2006-2007學(xué)年第一學(xué)期高三期末考數(shù)學(xué)試題(理) 題型:044

在△ABC中,已知B(-3,0),C(3,0),D為線段BC上一點,是△ABC的垂心,且

(1)求點H的軌跡M的方程;

(2)若過C點且斜率為的直線與軌跡M交于點P,點Q(t,0)是x軸上任意一點,

求:當(dāng)△CPQ為銳角三角形時t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年江蘇省無錫市高三調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,已知B(-3,0),C(3,0),D為線段BC上一點,,H是△ABC的垂心,且
(Ⅰ)求點H的軌跡M的方程;
(Ⅱ)若過C點且斜率為的直線與軌跡M交于點P,點Q(t,0)是x軸上任意一點,求當(dāng)△CPQ為銳角三角形時t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省陸慕高級中學(xué)09-10學(xué)年高二上學(xué)期第一次測試 題型:解答題

 

在△ABC中,已知

  (Ⅰ) 求證: ||=||;

(Ⅱ) 若||=||=,求|t|的最小值以及相應(yīng)的t的值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案