3.下列各式正確的是(x>0,y>0,z>0,a>0且a≠1)( 。
①${log_a}(x{y^2})=2{log_a}x•{log_a}y$;      
②${log_a}(x\sqrt{y})={log_a}x+2{log_a}y$;
③${log_a}\frac{xy}{z^3}={log_a}x+{log_a}y+\frac{1}{3}{log_a}z$;  
④${log_a}\frac{{\sqrt{xy}}}{z}=\frac{1}{2}{log_a}x+\frac{1}{2}{log_a}y+{log_a}z$.
A.①②B.①④C.③④D.都不正確

分析 利用對(duì)數(shù)的運(yùn)算性質(zhì)即可判斷出正誤.

解答 解:利用對(duì)數(shù)的運(yùn)算性質(zhì)可得:①$lo{g}_{a}(x{y}^{2})$=logax+2logay,因此①不正確;
②$lo{g}_{a}(x\sqrt{y})$=logax+$\frac{1}{2}$logay,因此②不正確;
③$lo{g}_{a}\frac{xy}{{z}^{3}}$=logax+logay-3logaz,因此③不正確;
④$lo{g}_{a}\frac{\sqrt{xy}}{z}$=$\frac{1}{2}$logax+$\frac{1}{2}$logay-logaz,因此④不正確.
綜上:都不正確.
故選:D.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=ax2+(2a+1)x-1是偶函數(shù),則實(shí)數(shù)a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=asinx-$\frac{3}{2}$(a∈R),若函數(shù)f(x)在(0,π)的零點(diǎn)個(gè)數(shù)為2個(gè),則當(dāng)x∈[0,$\frac{π}{2}$],f(x)的最大值為a-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△OBC中,點(diǎn)A是線段BC的中點(diǎn),點(diǎn)D是線段OB的一個(gè)靠近B的三等分點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AO}$=$\overrightarrow$.
(1)用向量$\overrightarrow{a}$與$\overrightarrow$表示向量$\overrightarrow{OC},\overrightarrow{CD}$;
(2)若$\overrightarrow{OE}=\frac{3}{5}\overrightarrow{OA}$,判斷C、D、E是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.集合A={x|x≤3},B={x|x>1},R為實(shí)數(shù)集.
(1)求A∩B;       
(2)求A∪(∁RB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=\sqrt{3+ax}$在區(qū)間(-2,4)內(nèi)單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.a<0B.$-\frac{3}{4}<a<0$C.$-\frac{3}{2}≤a<0$D.$-\frac{3}{4}≤a<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)y=f(x)在點(diǎn)(2,1)處的切線與直線3x-y-2=0平行,則f′(2)等于(  )
A.1B.-1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求a2017的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足b1=1,bn=$\frac{1}{{{a_n}\sqrt{{a_{n-1}}}+{a_{n-1}}\sqrt{a_n}}}$(n≥2,n∈N*),求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\sqrt{x+1}$+$\frac{{{{(1-x)}^0}}}{2-x}$的定義域?yàn)閇-1,1)∪(1,2)∪(2,+∞)(用集合或區(qū)間表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案