已知A、B、C、D為同一球面上的四個(gè)點(diǎn),且連接每?jī)牲c(diǎn)的線段長(zhǎng)都等于2,則球心到平面BCD的距離等于______________.

 

解析:本題考查球的內(nèi)接正四面體的性質(zhì).過(guò)三棱錐的高、一條側(cè)棱和對(duì)邊中點(diǎn)作球的截面,如圖:

由球的內(nèi)接正四面體的性質(zhì)知球心O在三棱錐的高AF上,在Rt△ABG中,根據(jù)射影定理有AB2=AF·AG,設(shè)球的

半徑為R,則AG=2R,AF=,AB=2,所以R=,所以O(shè)F=AF-R=,即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、已知a,b,c,d為實(shí)數(shù),且c>d.則“a>b”是“a-c>b-d”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c,d為實(shí)數(shù),且c>d.則“a>b”是“a-c>b-d”的
必要不充分
必要不充分
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C,D為同一球面上的四點(diǎn),且連接每?jī)牲c(diǎn)的線段長(zhǎng)都等于2,則球心到平面BCD的距離等于
6
6
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C,D為四個(gè)不同的點(diǎn),則它們能確定
一或四
一或四
個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c,d為實(shí)數(shù),判斷下列命題的真假.
(1)若ac2>bc2,則a>b
(2)若a<b<c,則 a2>ab>b2
(3)若a>b>0,則
a
d
b
c

(4)若0<a<b,則 
b
a
b+x
a+x

查看答案和解析>>

同步練習(xí)冊(cè)答案